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Abstract: Recent advances in the reinforcement learning (RL) literature have
enabled roboticists to automatically train complex policies in simulated environ-
ments. However, due to the poor sample complexity of these methods, solving RL
problems using real-world data remains a challenging problem. This paper intro-
duces a novel cost-shaping method which aims to reduce the number of samples
needed to learn a stabilizing controller. The method adds a term involving a Con-
trol Lyapunov Function (CLF) – an ‘energy-like’ function from the model-based
control literature – to typical cost formulations. Theoretical results demonstrate
the new costs lead to stabilizing controllers when smaller discount factors are
used, which is well-known to reduce sample complexity. Moreover, the addition
of the CLF term ‘robustifies’ the search for a stabilizing controller by ensuring
that even highly sub-optimal polices will stabilize the system. We demonstrate
our approach with two hardware examples where we learn stabilizing controllers
for a cartpole and an A1 quadruped with only seconds and a few minutes of fine-
tuning data, respectively. Furthermore, simulation benchmark studies show that
obtaining stabilizing policies by optimizing our proposed costs requires orders of
magnitude less data compared to standard cost designs.

Figure 1: We learn precise stabilizing policies on hardware for the Quanser cartpole [1] (top) and the Unitree
A1 quadruped [2] (bottom) using only seconds and a few minutes of real-world data, respectively. A video of
our experiments can be found here https://youtu.be/l7kBfitE5n8
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1 Introduction

A key challenge in robotics is reasoning about the long-horizon behavior induced by a control policy.
This is because important system properties such as stability are inherently long-horizon phenom-
ena. In reinforcement learning (RL), the discount factor implicitly controls how far into the future
policy optimization algorithms plan when optimizing the objective specified by the user. Standard
approaches to designing objective functions for robotic RL, such as penalizing the distance to a ref-
erence trajectory, inherently require a large discount factor to learn control policies which stabilize
the system [3, 4]. Unfortunately, problems with large discount factors can be extremely difficult to
solve, often requiring vast data sets and careful tuning of hyper-parameters [5]. As a number of re-
cent success stories have demonstrated [6, 7, 8, 9, 10, 11], ever-increasing computational resources
can be used to solve these problems in simulation and deploy the resulting controllers directly on the
real-world system. However, because it is impractical to model every detail of complex hardware
platforms, achieving the best performance will require learning from real-world data.

This paper introduces a cost-shaping framework which enables users to reliably learn stabilizing
control policies with small amounts of real-world data by solving problems with small discount fac-
tors. Our approach uses Control Lyapunov Functions (CLFs), a standard design tool from the control
theory literature [12, 13, 14, 15]. CLFs are ‘energy-like’ functions for the system which reduce the
search for a stabilizing controller to a myopic one-step criterion. In particular, any controller which
decreases the energy of the CLF at each instance of time will stabilize the system. Thus, CLFs
reduce the long-horizon objective of stabilizing the system to a simple one-step condition. When a
CLF is available and the dynamics are known, constructive techniques from the control literature can
be used to synthesize a stabilizing controller. However, when there is uncertainty in the dynamics, it
is difficult to guarantee that a controller will always decrease the value of the CLF, or that we have
even designed a true CLF for the system.

Our approach is to 1) design an approximate CLF for the real-world system using an approximate
dynamics model and 2) modify the ‘standard’ choice of cost functions mentioned above by adding a
term which incentivizes controllers which decrease the approximate CLF over time. This technique
effectively uses the approximate CLF as supervision for reinforcement learning, enabling the user
to embed known system structures into the learning process while retaining the flexibility of RL to
overcome unknown dynamics. Indeed, as our analysis demonstrates, when our approach is used
reinforcement learning algorithms implicitly learn to ‘correct’ the approximate CLF provided by
the user. When the candidate CLF is close to being a true CLF for the system (in a sense we
make precise below), a stabilizing controller can be efficiently learned by solving a problem with
a small discount factor. Moreover, the addition of the approximate CLF ‘robustifies’ the search for
a stabilizing controller by ensuring that even highly suboptimal policies will stabilize the system.
Finally, in situations where it is too difficult to design a nominal CLF by hand, we demonstrate how
one can be learned using a simulation model and the standard style of RL objective discussed above.
Specifically, we use the value function learned by the RL algorithm as an approximate CLF for the
real-world system. Altogether, beyond accelerating and robustifying RL, our approach also expands
the applicability of CLF-based design techniques.

We apply this technique to develop data-efficient fine-tuning strategies, wherein a nominal con-
troller developed using a simulation model is refined with small amounts of real-world data. For
the A1 experiment, the nominal controller is a model-based control architecture [16], and we hand-
design a CLF using a highly simplified linearized reduced-order model for the system. Even though
this model is very crude, we are nonetheless able to learn a precise tracking controller for this 18
DOF system with only 5 minutes of real-world data. For the cartpole swing-up task we used the
value function from a simulation-based RL problem as the candidate CLF for the real-world system,
using the learning process described above. Our fine-tuning approach then learned a robust swing-up
controller after observing only one 10 second trajectory from the real-world system.

1.1 Related Work

We outline how our approach departs from related work; Appendix A contains further discussion.
Discount Factors, Sample Complexity and Reward Shaping: It is well-understood that the dis-
count factor has a significant effect on the size of the data set that RL algorithms need to achieve a
desired level of performance. Specifically, it has been shown in numerous contexts [17, 18, 19, 20]
that smaller discount factors lead to problems which can be solved more efficiently. This has led to
a number of works which explicitly treat the discount factor as a parameter which can be used to
control the complexity of the problem alongside reward shaping techniques [21, 22, 5, 23, 24, 25].
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Compared to these works, our primary contribution is to demonstrate how CLFs can be combined
with model-free algorithms to rapidly learn stabilizing controllers for robotic systems.
Fine-tuning with Real World Data: Recently, there has been much interest in using RL to fine-
tune policies which have been pre-trained in simulation [26, 27, 28, 29]. These methods typically
optimize the same cost function with a large discount factor in both simulation and on the real robot.
In contrast, using our cost reshaping techniques, we solve a different problem with a smaller discount
factor on hardware which can be solved more efficiently. In Appendix D, we show that our method
outperforms typical fine-tuning approaches under moderate perturbations to the dynamics model.
Learning with Control Lyapunov Functions: A number of recent works have also tried to over-
come the reality gap using data-driven methods to improve CLF-based controllers [30, 31, 32, 33,
34, 35]. While these methods work well when a true CLF for the real-world system is available,
our method is more general as we can still efficiently learn stabilizing controllers when only an
approximate CLF is available by modulating the discount factor used to optimize our cost.

2 Background and Problem Setting
Throughout the paper we will consider deterministic discrete-time systems of the form:

xk+1 = F (xk, uk), (1)
where xk ∈ X ⊂ Rn is the state at time k, uk ∈ U ⊂ X is the input applied to the system at that
time, and F : X ×U → Rn is the transition function for the system. This general nonlinear model is
broad enough to cover many important continuous control tasks for robotics. We will let Π denote
the space of all control polices π : X → U for the system. To ease exposition, for our theoretical
analysis we will focus on the case where the goal is to stabilize the system to a single point, namely
the origin. Through our examples we will demonstrate how our cost-shaping technique can be
leveraged to achieve more complicated tasks, and in Section 5 we outline a path for extending our
theoretical results to these settings in future work.

2.1 Control Lyapunov Functions

Control Lyapunov Functions [12, 13, 14, 15] are ‘energy-like’ functions for the dynamics (1):
Definition 1. We say that a positive definite function W : Rn → R is a Control Lyapunov Function
(CLF) for (1) if the following condition holds for each x ∈ X\{0}:

min
u∈U

W (F (x, u))−W (x) < 0. (2)

The condition (2) ensures that for each x ∈ X there exists a choice of input which decreases
the ‘energy’ W (x). Any policy which satisfies the one-step condition W (F (x, π(x)))−W (x) < 0
can be guaranteed to asymptotically stabilize the system [36] (see Appendix B for background on
stability theory). Given a CLF for the system, model-based methods constructively synthesize a
controller which satisfies this property using either closed-form equations [13] or by solving an
online (convex) optimization problem [37, 15] to satisfy (2). However, when the dynamics are
unknown it is difficult to ensure that we have synthesized a ‘true’ CLF for the system.
Remark 1. (Designing Control Lyapunov Functions) While there is no general procedure for de-
signing CLFs by hand for general nonlinear systems, there do exist constructive procedures for
designing CLFs for many important classes of robotic systems, such as manipulator arms [14] and
robotic walkers [15] using structural properties of the system. Moreover, in our examples we will
investigate how a CLF can be learned from a simulation model and how very coarse CLF candidates
can be used to accelerate learning a stabilizing controller.

2.2 Stability of Dynamic Programming and Reinforcement Learning

Here we investigate how a common class of cost functions found in the literature can be used to
learn stabilizing controllers. In particular, we consider a running cost ` : X × U → R of the form
`(x, u) = Q(x) + R(u), where Q : X → R is the state cost and R : U → R is the input cost. Both
Q and R are assumed to be positive definite (in practice, both are usually quadratic). Given a policy
π ∈ Π, discount factor γ ∈ [0, 1], and initial condition x0 ∈ X , the associated long-run cost is:

V πγ (x0) =

∞∑
k=0

γk`(xk, π(xk)) (3)

s.t. xk+1 = F (xk, π(xk)),
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where V πγ : X → R ∪ {∞} is the value function associated to π. Small discount factors incentivize
policies which greedily optimize a small number of time-steps into the future, while larger discount
factors promote policies which reduce the cost in the long-run. We say that a policy π∗γ ∈ Π is
optimal if it achieves the smallest cost from each x ∈ X :

V
π∗γ
γ (x) = V ∗γ (x) := inf

π∈Π
V πγ (x), ∀x ∈ X ,

where V ∗γ : X → R ∪ {∞} is the optimal value function. Together V ∗γ and π∗γ capture the ‘ideal’
behavior induced by the cost function (3). It is well-known [17] that the optimal value function will
satisfy the Bellman equation:

V ∗γ (x) = inf
u∈U

[
γV ∗γ (F (x, u)) + `(x, u)

]
, ∀x ∈ X , (4)

and an optimal policy π∗γ will satisfy π∗γ(x) ∈ arg minu∈U
[
γV ∗γ (F (x, u)) + `(x, u)

]
, ∀x ∈ X . Un-

fortunately, it is impractical to directly search over Π to find a policy which meets these conditions.
This necessitates the use of function approximation schemes (e.g. feed-forward neural networks)
to instead represent a subset of policies Π̂ ⊂ Π to search over. Indeed, modern RL approaches for
robotics randomly sample the space of trajectories to optimize problems of the form:

inf
π∈Π̂

Ex0∼X0

[
V πγ (x0)

]
, (5)

where X0 is a distribution over initial conditions. While this approach enables these methods to
optimize high-dimensional policies, they are data-hungry, can display high-variance and thus fre-
quently return highly sub-optimal policies when data is limited. To better understand the effect that
this has on the stability of learned policies, for each π ∈ Π̂ and γ ∈ [0, 1] define the optimality gap:

επγ (x) = V πγ (x)− V ∗γ (x).

The temporal difference equation [17] dictates that for each x ∈ X the policy satisfies:
V πγ (x) = γV πγ (F (x, π(x))) + `(x, π(x)). (6)

From these equations we can obtain:

V πγ (F (x, π(x)))− V πγ (x) =
1

γ

(
− `(x, π(x)) + (1− γ)V πγ (x)

)
(7)

=
1

γ

(
− `(x, π(x)) + (1− γ)[V ∗γ (x) + επγ (x)]

)
(8)

≤ 1

γ

(
−Q(x) + (1− γ)[V ∗γ (x) + επγ (x)]

)
, (9)

where we have first rearranged (6), then used V πγ (x) = V ∗γ (x) + επγ (x), and finally we have used
`(x, π(x)) ≥ Q(x). Inequalities of this sort are the building block for proving the stability of
suboptimal polices in the dynamic programming literature [4, 3].
Remark 2. (Value Functions as CLFs) By inspecting the cost (3) we see that V πγ is positive definite
(since Q is positive definite). Thus, if the right-hand side of (9) is negative for each x ∈ X \ {0},
this inequality shows that V πγ is a CLF for (1), and that π is an asymptotically stabilizing control
policy. In other words, V πγ is a CLF which is implicitly learned during the training process. Indeed,
many RL algorithms directly learn an estimate of the value function, a fact which we later exploit to
learn a CLF for the cartpole swing up-task in Section 4 using the nominal simulation environment.

Note that the right hand side of (9) will only be negative if V ∗γ (x) + επγ (x) < 1
1−γQ(x). Since

from (3) we know that V ∗γ (x) > Q(x) for each x ∈ X , even the optimal policy (which has no
optimality gap) will only be stabilizing if γ is large enough. On the other hand, for a fixed γ ∈ (0, 1],
this inequality also quantifies how sub-optimal a policy can be while maintaining stability. To make
these observations more quantitative we make the following assumption:
Assumption 1. For each γ ∈ [0, 1] there existsCγ ≥ 1 such that V ∗γ (x) ≤ CγQ(x) for each x ∈ X .

Growth conditions of this form are standard in the literature on the stability of approximate
dynamic programming [38, 3, 4, 39]. Note that, because the running cost ` is non-negative, we have
Cγ′ ≤ Cγ′′ if γ′ ≤ γ′′. In particular, the constant C1 upper-bounds the ratio between the one-step
cost and the optimal undiscounted value function. When C1 is smaller, the optimal undiscounted
policy is more ‘contractive’ and approximate dynamic programming methods converge more rapidly
to an optimal solution [38]. Thus, intuitively the constants Cγ ≥ 1 will be smaller when the system
is easier to stabilize. The following result is essentially a specialization of the main result from [39]:
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Proposition 1. Let Assumption 1 hold and let γ ∈ [0, 1] and π ∈ Π̂ be fixed. Further assume that
there exists δ > 0 such that for each x ∈ X we have i) επγ (x) ≤ δQ(x) and ii) Cγ + δ < 1

1−γ .
Then, π asymptotically stabilizes (1).

Proof. Combining conditions i) and ii) with equation (9) yields:

V πγ (F (x, π(x)))− V πγ (x) ≤ 2

γ

(
− 1 + (1− γ)[Cγ + δ]

)
Q(x).

Thus the RHS of the preceding equation will be negative-definite if Cγ + δ < 1
1−γ , which demon-

strates the desired result.

Remark 3. (Stability Properties of the Cost Function) In the following section we will derive an
analogous result to Proposition 1 for the novel reshaped cost function we propose below. When
comparing these results we will primarily focus on the effect of the constants Cγ ≥ 1 (and the
equivalent constants for the new setting). The Cγ constants can be used to bound how large of a
discount factor is need to stabilize the system. In particular, Proposition 1 implies that the optimal
policy will stabilize the system for each γ which satisfies γ > 1 − 1

Cγ
. The Cγ constants also

characterizes how ‘robust’ the cost function is to suboptimal policies. In particular, for a fixed
discount factor, the policy will stabilize the system if δ < 1

1−γ − Cγ . Thus smaller values of the Cγ
constants permit more suboptimal policies.

3 Lyapunov Design for Infinite Horizon Reinforcement Learning

Our method uses a positive definite candidate Control Lyapunov Function W : Rn → R for the
nonlinear dynamics (1), and reshapes (3) to our proposed new long horizon cost Ṽ πγ : X → R∪{∞}:

Ṽ πγ (x0) =

∞∑
k=0

γk
(

[W
(
F (xk, π(xk))

)
−W (xk)] + `(xk, π(xk))

)
(10)

s.t. xk+1 = F (xk, π(xk)).

As we shall see below, our method works best when W is in fact a CLF for the system, but still
provides benefits when it is only an ‘approximate’ CLF for the system (in a sense we will make
precise later). For each γ ∈ [0, 1] the new optimal value function is given by:

Ṽ ∗γ (x) = inf
π∈Π

Ṽ πγ (x). (11)

The new cost (10) includes the amount that W changes at each time step, and thus encourages
choices of inputs which decrease W over time. In this case, the Bellman equation [17] dictates:

Ṽ ∗γ (x) = inf
u∈U

[
γṼ ∗γ (F (x, u)) + ∆W (x, u) + `(x, u)

]
, ∀x ∈ X , (12)

where ∆W (x, u) := W (F (x, u))−W (x). To gain some intuition for the approach let us consider
the two extremes where γ = 0 and γ = 1. In the case where γ = 1, by inspection we see
that Ṽ ∗1 = V ∗1 −W solves the Bellman equation. Plugging in this solution demonstrates that any
optimal policy π̃∗1 must satisfy π̃∗1(x) ∈ arg minu∈U [V ∗1 (F (x, u)) + `(x, u)]. This is precisely the
optimality condition for the original cost (3) when γ = 1, and thus the set of optimal policies for the
two problems coincide. Thus, in this case, by embedding the CLF in the cost we are effectively using
W as a warm-start initial guess for the optimal value function. In the other extreme where γ = 0,
from (12) we see that an optimal policy must satisfy π̃∗0(x) ∈ arg minu∈U

[
∆W (x, u) + `(x, u)

]
.

Thus, when γ = 0 the optimal policy attempts to greedily decrease the value of the candidate CLF
and the one-step cost on the input. As we shall see below, when intermediate discount factors are
used, optimal policies may instead decrease the value of W over the course of several steps.

Using the new cost function (10), each policy must satisfy the new difference equation:

Ṽ πγ (x) = γṼ πγ
(
F (x, π(x))

)
+W

(
F (x, π(x))

)
−W (x) + `(x, π(x)). (13)

In our stability analysis, we will use the following composite function as a candidate CLF for (1):

Ṽπ

γ (x) = W (x) + γṼ πγ (x). (14)
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We provide an interpretation of this curious candidate CLF in Remark 4 below, but first perform
an initial analysis similar to the one presented in the previous section. Defining for each π ∈ Π̂,
γ ∈ [0, 1] and x ∈ X the new optimality gap:

ε̃πγ (x) = Ṽ ∗γ (x)− Ṽ πγ (x), (15)
and following steps analogous to those taken in (7)-(9), we can obtain the following:

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ (x) = −`(x, π(x)) + (1− γ)Ṽ πγ (x) (16)

= −`(x, π(x)) + (1− γ)
[
Ṽ ∗γ (x) + ε̃πγ (x)

]
(17)

≤ −Q(x) + (1− γ)
[
Ṽ ∗γ (x) + ε̃πγ (x)]. (18)

Similar to the analysis in the previous section, we will aim to understand when the right-hand side of
(18) is negative, as this will characterize when π stabilizes the system. One key difference between
the inequalities (9) and (18) is that, while the original value function V ∗γ is necessarily positive
definite, Ṽ ∗γ can actually take on negative values since the addition of the CLF term allows the
new running cost in (10) to be negative. As we shall see, this forms the basis for the stability and
robustness properties our cost formulation enjoys when W is designed properly.
Remark 4. (Learning Corrections to W) When the right hand side of (18) is negative for each
x ∈ X \ {0}, inequality (18) demonstrates that Ṽπ

γ is in fact a CLF for (1) and that π stabilizes the
system (see Theorem 1). We can think ofW as an ‘initial guess’ for a CLF for the system, while γṼ πγ
is a ‘correction’ toW that is implicitly made by a learned policy π. Roughly speaking, the larger the
discount factor, the larger this correction. Thus, the user can trade-off how much the learned policy
is able to correct the candidate CLF W against the additional complexity of solving a problem with
a higher discount factor, depending on how ‘good’ they believe the CLF candidate to be.

We first state a general stability result for suboptimal policies associated to the new cost, and
then discuss how the choice of W affects the stability of suboptimal control policies:

Assumption 2. For each γ ∈ [0, 1] there exists C̃γ ∈R such that Ṽ ∗γ (x) ≤ C̃γQ(x) for each x ∈ X .

Because the reshaped one-step cost W (F (x, u))−W (x) + `(x, u) can take on negative values,
so can the C̃γ constants. Moreover, in this case it is possibe to have C̃γ′ ≥ C̃γ′′ when γ′ ≤ γ′′. This
is because when larger discount factors are used, the optimal policy can benefit from decreasing W
further into the future. The following stability result is analogous to Proposition 1:

Theorem 1. Let Assumption 2 hold and let γ ∈ [0, 1] and π ∈ Π̂ be fixed. Further assume that there
exists δ̃ > 0 such that for each x ∈ X we have i) ε̃πγ (x) ≤ δQ(x) and ii) C̃γ + δ̃ < 1

1−γ . Then, π
asymptotically stabilizes (1).

The proof is conceptually similar to the proof of Proposition 1; we delegate the proof to Ap-
pendix C for brevity. Indeed, note that the conditions for stability under the new cost are essentially
identical to those for the previous cost in Proposition 1.

As alluded to in Remark 3, we will primarily focus on comparing how large the constantsCγ ≥ 1

and C̃γ ∈ R are for the two problems, as they control the discount factor required to learn a stabiliz-
ing policy and also the ‘robustness’ of the cost to suboptimal controllers. We provide two character-
izations which ensure that C̃γ < Cγ . The first condition is taken from the model-predictive control
literature [40, 41], where CLFs are used as terminal costs for finite-horizon prediction problems.
Proof of the following result can be found in Appendix C:
Lemma 1. Suppose that for each x ∈ X the following condition holds:

inf
u∈U

W (F (x, u))−W (x) + `(x, u) ≤ 0. (19)

Then Assumption 2 is satisfied with constant C̃γ ≤ 0.

The hypothesis of Lemma 1 implies that i)W is a true CLF for the system and ii)W dominates
the running cost `, in the sense that W can be decreased more rapidly than ` accumulates. Effec-
tively, this condition implies that it is advantageous for polices to myopically decrease W at each
time step. Consequently, when this condition holds optimal polcies associated to the reshaped costs
(10) will stabilize the system for any choice of discount factor.

The following definition generalizes this condition to cases where W may not be a true CLF for
the system but can be decreased over several time-steps:

6



Figure 2: (Left) Plot illustrating improved velocity tracking of the learned policy (in dark green) compared to
the nominal locomotion controller (in pink) to track a desired velocity profile (in dashed black line) using our
proposed method on the Unitree A1 robot hardware. (Right) Plot from the simulated benchmark study illus-
trating cumulative velocity tracking error (lower is better) over 10s rollouts at different stages of the training.
In orange, we show the results of fine-tuning using SAC with a standard RL cost. In blue, we fine-tune using
SAC with our reward reshaping method, with a candidate CLF designed on a nominal linearized model of the
robot. In both cases, we plot the results using the discount factor that achieved the best performance.

Definition 2. We say that the candidate CLF W γ̄-dominates the running cost ` if for each discount
factor γ̄ ≤ γ ≤ 1 and x ∈ X we have Ṽ ∗γ (x) ≤ V ∗γ (x).

The condition in (2) effectively provides a way of characterizing how ‘close’ W is to being
a true CLF for the real-world system. In particular, the larger γ̄ the further into the future RL
algorithms must look to see the benefits of decreasing W . Our previous discussion, which showed
that Ṽ ∗1 = V ∗1 −W , demonstrates that every candidate CLF 1-dominates the cost. Moreover, clearly
W can only 0-dominate the original cost if it is a CLF for the system. While this condition is
more difficult to verify for intermediate values of γ̄, it provides qualitative insight into how even
approximate CLFs for the system can still make it easier to obtain stabilizing controllers.

Remark 5. (Robustness of reshaped cost) When the condition of Lemma 1 is satisfied we will have
C̃γ ≤ 0 < Cγ , implying the new cost enjoys the desirable robustness properties discussed above.
When W satisfies the ‘approximate CLF’ condition in Definition (2), it will only enjoy these benefits
when the discount factor is large enough. We leave it as a matter for future work to provide quan-
titative estimates for the C̃γ constants in these regimes, and to provide sufficient conditions which
ensure W γ̄-dominates the running cost.

4 Examples and Practical Implementations

We summarize the main results for each of our examples, but leave most details and plots to Ap-
pendix D. In every experiment we report, the soft actor-critic algorithm (SAC) [42] is used as the
learning algorithm to optimize the various reward structures we investigate.
Velocity Tracking for A1 Quadruped: We apply our approach to train a neural network controller
which augments and improves a nominal model-based controller [16] for a quadruped robot using
real-world data. As illustrated by the pink curve in Fig. 2 (left), the nominal controller fails to
accurately track desired velocities specified by the user. We design a CLF around the desired gait
using a linearized reduced-order model for the system. We then collect rollouts of 10s on the robot
hardware with randomly chosen desired velocity profiles, and solve an RL problem using our cost
and a discount factor γ = 0. Our approach is able to learn a policy which significantly improves
the tracking performance of the nominal controller within 5 minutes (30 episodes) of hardware
data, as shown in Fig. 2 (left). A video of these results can be found in https://youtu.be/
l7kBfitE5n8, and more details are provided in Appendix D. Furthermore, in Fig. 2 (right) we
benchmark our approach in simulation against an RL agent trained with a ‘standard’ cost which
penalizes the squared error with respect to the desired velocity. As this figure demonstrates, our
method is able to rapidly decrease the average tracking error in only around 2 thousand steps from
the environment. In contrast, the benchmark approach is only able to reach this level of performance
for the first time after around 24 thousand steps.
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A1 Quadruped Walking with an Unknown Load: We attach an un-modeled load to the A1
quadruped, that is equivalent to one-third the mass of the robot. Fine-tuning on hardware the same
base controller from the previous set-up where the CLF is designed to stabilize to the target gait,
our approach is able to significantly decrease the tracking error to about one-third its nominal value
with only one minute of data collected on the robot hardware as illustrated in Fig. 3 in Appendix D.
Additionally, in Appendix D, we run a simulated benchmark comparison and verify that our method
clearly out-performs the ‘standard’ cost baseline for this task.
Fine-tuning a Learned Policy for Cartpole Swing-Up: We fine-tune a swing-up controller for the
Quanser cartpole system [1] using real-world data and an initial policy which was pre-trained in
simulation but that does not translate well to the real system. Due to the underactuated nature of
the system, synthesizing a CLF by hand is challenging. Thus, as alluded to previously, we use a
‘typical’ cost function of the form (3) and a discount factor of γ = 0.999 to learn a stabilizing neural
network policy πφ for a simulation model of the system. Given the discussion in Remark 2, we use
the value function Vθ associated with the simulation-based policy as the candidate CLF (W = Vθ)
for our reward reshaping formulation (10). When improving the simulation-based policy πφ with
real-world data, we keep the parameters of this network fixed and learn an additional smaller policy
πψ (so that the overall control action is produced by πφ + πψ) using our proposed CLF-based cost
formulation. We solve the reshaped problem with a discount factor γ = 0 and collect rollouts of 10s
on hardware. Our CLF-based fine-tuning approach is able to successfully complete the swing-up
task after collecting data from just one rollout. After collecting data from an additional rollout, the
controller is reliable and robust enough to recover from several pushes. A video of these experiments
can be found in https://youtu.be/l7kBfitE5n8, and more details and plots of the results are
provided in Appendix D. Furthermore, in Appendix D we provide a simulation study comparing
a standard fine-tuning approach to our method, showing that our approach is able to more rapidly
learn a reliable swing-up policy than the baseline and also achieves a higher reward.
Fine-tuning a Bipedal Walking Controller in Simulation: We also apply our design methodology
to fine-tune a model-based walking controller [15] for a bipedal robot with large amounts of dynam-
ics uncertainty. Model uncertainty is introduced by doubling the mass of each link of the robot. The
nominal controller fails to stabilize the gait and falls within a few steps. To apply our method, we
design a CLF around the target gait as in [15] to be used in our reward formulation. As a benchmark
comparison, we also train policies with a reward which penalizes the distance to the target motion
(no CLF term), as is most commonly done in RL approaches for bipedal locomotion which use tar-
get gaits in the reward [10]. Our approach is able to significantly reduce the average tracking error
per episode after only 40000 steps of the environment (corresponding to 40 seconds of data), while
the baseline does not reach a similar level of performance even after 1.2 million steps, as illustrated
in Fig. 7 of Appendix D.
Inverted Pendulum with Input Constraints: Our final example demonstrates the utility of our
method even whenW is a crude guess for a CLF for the system, through the use of moderate discount
factors. We illustrate this for a simple inverted pendulum simulator by varying the magnitude of the
input constraints for the system. We use the procedure from [15] to design a candidate CLF for the
system. Like many CLF design techniques, this approach assumes there are no input constraints and
encourages the pendulum to swing directly up. As the input constraints are tightened, W becomes
a poorer candidate CLF, as there is not enough actuation authority to decrease W at each time
step. Even in this case, in line with the discussion of Remark 5, if a proper discount factor is used,
the addition of the candidate CLF in the reward enables our method to rapidly learn a stabilizing
controller for each setting of the input bound. These results are presented in Appendix D.

5 Discussion and Limitations

As we have mentioned previously, our approach has several limitations. The cost-shaping tech-
nique we introduce in Section 3 only provides benefits when W is in-fact a reasonable guess for
a CLF for the true system. This requires that the user has a dynamics model which captures the
primary features of the environments which affect the structure of CLFs for the system. While the
cart-pole simulations we provide in the Appendix D provide some intuition for when this will be
the case, further research is needed to better understand in what scenarios we can see significant
benefits from our method. Nonetheless, our two hardware experiments provide encouraging initial
results which indicate that our method can rapidly learn stabilizing controllers using CLFs which
are constructed using a nominal dynamics model. More broadly, there are many exciting avenues
for further incorporating Lyapunov design techniques with RL, especially offline learning [43].
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A Additional Literature Review

Model Predictive Control: We briefly review stability results from the model predictive control
(MPC) literature, focusing our discussion on the benefits of using a CLF as the terminal cost. In
their simplest form, MPC control schemes minimize a cost functional of the form

inf
û∈UN

JNMPC(xk, û) =

N−1∑
k=0

(
Q(x̂k) +R(ûk)

)
+ Ŵ (x̂N )

s.t. x̂k+1 = F (x̂k, ûk), x̂0 = xk,

where xk is the the current state of the real-world system, N ∈ N is the prediction horizon, {x̂k}Nk=0

and û = {ûk}N−1
k=0 ∈ UN are a predictive state trajectory and control sequence, Q and R are as

above, and Ŵ : Rn → R≥0 is the terminal cost which is assumed to be a proper function. The
MPC controller then applies the first step of the resulting open loop control and the process repeats,
implicitly defining a control law uMPC(x). The MPC cost JNMPC(xk, ·) can be thought of as a finite-
horizon approximation of the original cost (3) (except that it is defined over an open-loop sequence
of control inputs instead of being a cost over policies).

Stability results from the MPC literature focus primarily on the effects of the prediction horizon
N and the choice of terminal cost Ŵ . Under mild conditions, for any choice of terminal cost
(including Ŵ (·) ≡ 0), the user can guarantee that the MPC scheme stabilizes the system on any
desired operating region by making the prediction horizon N sufficiently large [44, 41]. Thus, there
is a clear connection between the explicit prediction horizon N in MPC schemes and the discount
factor γ, as both need to be sufficiently large if a stabilizing controller is to be obtained (since
trajectory optimization problems with longer time horizons are generally more difficult to solve).
Indeed, in [3] it was pointed out that the implicit prediction horizon 1

1−γ , a factor which shows up
in the stability conditions in Proposition 1, plays essentially the same role in stability analysis as N
for an MPC scheme with no terminal cost when the running cost is ` = Q + R. Thus, much like
the ‘typical’ policy optimization problems discussed in Section 2.2, MPC schemes with no terminal
cost (or one which is chosen poorly) may require an excessively long prediction horizon to stabilize
the system.

Fortunately, the MPC literature has a well-established technique for reducing the prediction
horizon needed to stabilize the system: use an (approximate) CLF for the terminal cost Ŵ [45, 44,
41]. Indeed, roughly speaking, these results guarantee that for any prediction horizon N ∈ N the
MPC scheme will be stabilizing if Ŵ is a valid CLF for the system. Extensive empirical evidence
[40] and formal analysis [45] has demonstrated that well-designed CLF terminal costs reduce the
prediction horizon needed to stabilize the system on a desired set and increase the robustness of the
overall MPC control scheme [46]. Thus, in many ways our cost-reshaping approach can be seen as
a way to obtain these benefits in the context of infinite horizon model-free reinforcement learning.

B Asymptotic Stability and Lyapunov Theory

B.1 Asymptotic Stability and Lyapunov Theory

Next, we briefly introduce the elements from stability theory and Lyapunov theory which we use
extensively throughout the paper.

B.2 Notation and Terminology

We say that a function W : Rn → R is positive definite if W (0) = 0 and W (x) > 0 if x 6= 0.
Let α : [0,∞) → [0,∞) be a continuous function. We say that α is in class K (denoted α ∈ K) if
α(0) = 0 and α is strictly increasing. If in addition we have α(r) → ∞ as r → ∞ when we say
that α is in class K∞ (denoted α ∈ K∞). Let β : [0,∞)× [0,∞) be a continuous function. We say
that β is in class KL if for each fixed t ∈ [0,∞) the function β(·, t) is in class K and for each fixed
r ∈ [0,∞) we have β(r, t)→ 0 as t→∞.

B.3 Basic Stability Results

Definition 3. We say that the closed loop system xk+1 = F (xk, π(xk)) is asymptotically stable on
the set D ⊂ Rn if there exists β ∈ KL such that for each initial condition x0 ∈ D and k ∈ N the
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closed-loop trajectory satisfies:
‖xk‖2 ≤ β(‖x0‖2, k). (20)

Analogously, if the preceding condition holds then we say that π asymptotically stabilizes (1).

In words, the definition says that π asymptotically stabilizes (1) if all trajectories of the closed-
loop system xk+1 = F (xk, π(xk)) converge to the origin. Asymptotic stability is a difficult property
to verify directly as it requires reasoning about the infinite-horizon behavior of trajectories. Lya-
punov functions are a powerful analysis tool which can verify asymptotic stability with a ‘one-step’
criterion:

Definition 4. We say that the positive definite function W : Rn → R is a Lyapunov function for the
closed-loop system xk+1 = F (xk, π(xk)) if for each x ∈ Rn we have:

W (F (x, π(x)))−W (x) < 0. (21)

Intuitively, the Lyapunov function W can be thought of as an energy-like function for the closed
loop system xk+1 = F (xk, π(xk)). In this light, the condition (21) ensures that the ’energy’ of
the closed-loop system is decreasing at each point in the state-space. This condition guarantees that
the closed-loop system is asymptotically stable [47], and is a simple algebraic condition. Note that
while control Lyapunov functions are defined formally for the open-loop dynamics (1), a Lyapunov
function is defined for a particular set of closed-loop dynamics. That is, a control Lyapunov function
W for xk+1 = F (xk, uk) becomes a Lyapunov function for the closed-loop dynamics xk+1 =
F (xk, π(xk)) after we apply a control law π which satisfies W (F (x, π(x)))−W (x) < 0 for each
x ∈ X .

C Missing Proofs and Intermediate Results

Lemma 2. The composite function Ṽπ

γ = W + γṼ πγ : X → R ∪ {∞} is positive definite.

Proof. Note that we can re-write the reshaped cost (10) as

Ṽ πγ (x0) =

∞∑
k=0

γk
(

[W (xk+1)−W (xk) + `(xk, π(xk))]

)
, (22)

where {xk}∞k=0 is the state trajectory generated by the policy π from the initial condition x0 ∈ X .
By rearranging terms we can rewrite this expression as:

Ṽ πγ (x0) = −W (x0) + (1− γ)

∞∑
k=0

γkW (xk+1) +

∞∑
k=0

γk`(xk, π(xk)) > −W (x0) +Q(x0) (23)

where we have used the fact that W and ` are both non-negative, and that `(x0, π(x0)) > Q(x0).
Thus, using this expression we see that

Ṽπ

γ (x0) = W (x0) + γṼ πγ (x0) > (1− γ)W (x0) + γQ(x0), (24)

Since Q and W are assumed to be positive definite functions this demonstrates that Vπ
γ is in fact

positive definite, since a convex combination of positive definite functions is positive definite. The
proof is concluded by noting that the choice of γ and π is arbitrary, and thus the conclusion that Vπ

γ
is positive definite holds for all policies and discount factors.

C.1 Proof of Theorem 1

Proof. Lemma 2 demonstrates that Ṽπ

γ = W +γṼ πγ : X → R∪{∞} is a positive definite function.
Using the hypotheses of the results with the inequality (18) we obtain

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ (x) ≤ (−1 + (1− γ)[C̃ + δ̃])Q(x). (25)

Note that if C̃+ δ̃ < 1
1−γ then the right hand side of (2.2) will be negative definite, which establishes

that π asymptotically stabilizes the system.
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C.2 Proof of Lemma 1

Proof. Consider a policy π̄ ∈ Π defined for each x ∈ X by:

π̄(x) ∈ arg inf
u∈U

W (F (x, u))−W (x) + `(x, u) ≤ 0, (26)

where the preceding inequality follows directly from the assumptions made in the Lemma. Next,
for a given initial condition x0 ∈ X let {xk}∞k=0 be the state trajectory generated by π̄. The corre-
sponding reshaped cost is given by

Ṽ π̄γ (x0) =

∞∑
k=0

γk
(

[W
(
F (xk, π̄(xk))

)
−W (xk)] + `(xk, π̄(xk))

)
(27)

≤
∞∑
k=0

γk(0) (28)

≤ 0, (29)

which demonstrates the desired result, since the initial condition and discount factor were chosen
arbitrarily.

D Additional Experiment Details

We now provide more details of the experimental results reported in Section 4 and also additional
evaluations. While we have chosen to minimize costs in the main portion of the paper, as this is more
consistent with the notation used in the literature on Lyapunov theory and the stability of dynamic
programming, most RL algorithms take in rewards that are to be maximized. Thus, for the sake of
consistency with practical implementations, in this section we report the reward functions used in
our code, which are simply the costs from before with the sign flipped.

For training from hardware data, we used asynchronous off-policy updates, similar to the frame-
work presented in [48]. In particular, we have two separate threads, with one running episodes on the
hardware system with the latest available policy and adding the transition data to the replay buffer,
and the other one sampling from this buffer and performing the actor and critic updates. We only
synchronize the policy network weights at the beginning of each episode.

D.1 A1 Quadruped Results

To illustrate the efficacy of our approach, we run two sets of experiments with the A1 robot: 1)
accurately tracking a target velocity when the gains kp and kd are not well tuned (Section 4); and
2) accurately tracking the height of the robot with an unknown load attached to it. Here we provide
additional details of experiments related to these experiments. For both settings, we use the locomo-
tion controller presented in [16, Section 3.2] as our nominal baseline controller. This controller uses
a linearized rigid-body model to formulate a quadratic-program (QP)-based controller to track a de-
sired body pose of the robot. Specifically, the following QP is solved to obtain the ground reaction
forces f for the feet in contact with the ground:

min
f
‖Mf − g̃ − q̈d‖Q + ‖f‖R (30)

s.t. fz ≥ 0,

− µfz ≤ fx ≤ µfz,
− µfz ≤ fy ≤ µfz,

where M is the inverse inertia matrix of the rigid body, g̃ := [0, 0, g, 0, 0, 0] denotes the acceleration
due to gravity and q̈d ∈ R6 are the desired pose accelerations of the robot’s body. In particular, the
desired accelerations are obtained using a PD controller,

q̈d = −kp(q − qd)− kd(q̇ − q̇d), (31)

with q ∈ R6 denoting the robot’s body pose.
Next, we provide further details for each set of experiments on the A1 robot.
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Figure 3: Comparison between nominal controller and learned policy after training on 60s of real-world data
on the A1 robot with an added 10lb weight. The learned policy is able to significantly reduce the tracking error
caused by the added weight.

Figure 4: Cumulative gait tracking error (lower is better) over 10s rollouts at different stages of the simulated
fine-tuning benchmark comparison of the A1 quadruped with an unknown load. In orange, we show the results
of fine-tuning using SAC with a standard RL cost which penalizes the distance to the desired gait with a discount
factor of γ = 0.99. In blue, we plot the performance of our cost reshaping method with SAC and a discount
factor of γ = 0. For both cost formulations, we plot the discount factor that led to the best performance.

D.1.1 Velocity Tracking for A1 Quadruped
When the feedback gains kp, kd ∈ R6 are not well tuned, large tracking errors in the forward speed of
the robot can persist as illustrated in Fig. 2 (left). To compensate for the increased tracking error, we
learn a policy πθ (MLP with two hidden layers of size 32×32) that outputs an additional acceleration
term in (31), making the final desired acceleration q̈d = −kp(q − qd) − kd(q̇ − q̇d) + πθ. πθ can
therefore be viewed as a learned fine-tuning policy with respect to a model-based controller. The
observations for the RL agent include the forward and lateral velocity, the roll and pitch orientation
and the desired forward velocity of the robot. The actions include offsets to the desired forward and
lateral accelerations.

The policy πθ is learned directly on the robot hardware using a CLFW designed for the nominal
rigid body dynamics of the robot following the procedure described in [15]. For training, we use
SAC [42] with the reward rk = (W (F (xk,uk))−W (xk))

∆tk
+ λ‖uk‖2. The CLF term in the reward

allows us to use a discount factor γ = 0, which considerably reduces the complexity of the learning
problem. Indeed, within only 5 minutes of data collected from the robot hardware, our method
is able to significantly reduce the tracking error in the forward velocity compared to the nominal
locomotion controller, as shown in Figure 2 (left).

D.1.2 Height Tracking with an Unknown Load
In this experiment, we use the same base controller and an equivalent offset policy πθ as in the
previous set-up and attempt to track a target gait. The CLF is designed to stabilize to the target gait
as in the previous experiment. Figure 3 plots the tracking error of the learned controller versus the
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Figure 5: Experimental plots of the cart position and pendulum angle of the cartpole system. (left) The policy
trained only in simulation fails to bring the real cartpole system to the upright position; (right) by fine-tuning
the learned policy with 20s of real-world data using our CLF-based reward function, we obtain a successful
policy.

nominal controller after only 1 minute of training data. As the figure demonstrates, our approach is
able to significantly decrease the error to about one-third its nominal value with only a small amount
of data.

To verify that our method out-performs the baseline for this task, we run a simulated benchmark
comparison similar to the A1 simulation study for velocity tracking that was presented in Section
4 of the paper. For this case, we reproduce the unknown load hardware experiment in simulation
by adding a 10lb weight to the robot. When testing our method, we again use SAC with the same
reward formulation from the hardware experiments above. For the baseline reward, we penalize the
distance to the target that we want to track. Figure 4 depicts the best results that we have been able
to obtain for each cost formulation across different discount factors and training hyper-parameters.
As Fig. 4 depicts, our approach quickly converges to a stable walking controller which closely
tracks the references after only around 22 thousand steps of the environment. The baseline does not
match this performance until it has had access to around 48 thousand steps, and takes much longer
to consistently approach the performance of our method.

D.2 Cartpole Results

We first provide plots and give additional details for the cartpole experiments presented in Section
4. Then, we present a comparison of the performance of our approach with respect to a typical
fine-tuning method on a simulator of the cartpole system.

D.2.1 Additional Details of the Cartpole Hardware Fine-tuning Experiments
For the cartpole experiments presented in Section 4, we used a Quanser Linear Servo Base
Unit with Inverted Pendulum [1], with a pendulum length of 60cm. The system has 4 states,
x = [p, α, ṗ, α̇] ∈ R4, corresponding to the cart position p, the pendulum angle α, and their
respective velocities. The control input is the voltage applied to the motor that actuates the cart
u ∈ R.

We first train a SAC agent in simulation using a ‘conventional’ RL reward that penalizes the
distance to the equilibrium, control effort, and includes a penalty if the cart goes off-bounds
r(xk, uk) = −0.1 (5α2

k + p2
k + 0.05u2

k) − 5 · 103 · 1(|pk| ≥ 0.3). The observations of the RL
agent are state measurements, the actions are direct voltage commands with limits set to |u| < 10V
as specified by the manufacturer, and the simulation is run at 100Hz. In order to obtain a sta-
bilizing swing-up policy with this traditional reward, a high discount factor is needed, so we use
γ = 0.999. After around 15 thousand seconds of simulation data with a learning rate of 5 · 10−4,
the RL agent learns to consistently swing-up and balance the pendulum at the upright position in
simulation. However, when deployed on the cartpole hardware system, the policy from simulation
fails to obtain successful swing-up behaviors due to the sim-2-real gap, as shown in the attached
video.

16



Figure 6: Comparison of the simulation results of fine-tuning a cartpole swing-up policy after adding model
mismatch. A policy trained on a nominal dynamics model of the cartpole fails when deployed on the new
dynamics. In blue, we show the results of continuing to train the agent with the original costs and discount
factor. In orange, we fine-tune using our reshaping method with the pre-trained value function and a discount
factor of γ = 0. For each episode of training on the new dynamics model, we compare the performance of both
methods when running the cartpole from 10 initial conditions: (on the left) the average original reward without
the CLF term, and (on the right) the cumulative number of successful swing-ups. The plots show the mean and
standard deviation of the results over 10 different training random seeds.

To tackle these issues, we exploit the fact that SAC uses a feedforward neural network to ap-
proximate the discounted value function of the problem, and we use this approximate value function
(after 18,600 seconds of data) as a CLF candidate to fine-tune the learned policy directly on hard-
ware.

Thus, we learn on hardware a fine-tuning policy uψ (MLP with 2 hidden layers of 64 × 64)
whose actions are added to the ones of the policy trained on simulation uφ (MLP with 2 hidden
layers of 400 × 300). The episodes are 10 seconds long, and the policy is run at 500Hz, with
each episode consisting of 5000 data points. The action space limits for this new policy are set to
|uψ| < 4V but we still have a saturation of the total voltage |uφ + uψ| < 10V. The reward for this
new policy is r̂(xk, uk) = ∆Vθ(xk, uk)− 0.1 · (5α2

k + p2
k + 0.05u2

k), where Vθ is the value function
network of the SAC agent that was trained in simulation. This allows us to set the discount factor
γ = 0 for the offset policy learned on hardware and therefore greatly reduce the complexity of the
learning problem. After only one episode of 10 seconds of real-world data we obtain a policy that
manages to swing-up the pendulum to the upright position, and stabilizes it at the top. However,
the behavior near the top is not smooth, and it fails for some different initial conditions. After
training with another episode of 10 seconds of data, we obtain a policy that consistently manages
to swing-up and balance the pendulum at the top, while the cart stays in-bounds. The plots in Fig.
5 (right) show the cart position and the pendulum angle when deploying the fine-tuned policy in
the real Quanser cartpole system. The plots in Fig. 5 (left) show the results when using the policy
that has been only trained in simulation, and how its performance is very different when deployed
in simulation vs in hardware. A video with the results of the cartpole experiments can be found in
https://youtu.be/l7kBfitE5n8, and a sequence of snapshots of a successful experiment that
uses the fine-tuned policy can be found in Figure 1.

D.2.2 Cartpole Simulation Baseline Comparison with a Typical Fine-tuning Method
As explained at the beginning of the paper, previous work has shown that using hardware data to
fine-tune a policy that has been pre-trained in simulation is a powerful approach to tackle the sim-
2-real gap problem (e.g. [26, 27, 28, 29]). These methods typically take the RL agent trained in
simulation and continue its learning process using hardware data, the original cost function and
discount factor (see e.g. [26]). In contrast, our proposed approach stops the simulation training
of uφ and learns a smaller offset policy uψ from hardware data using a separate learning process
that has a different reward function r̂ (with the CLF candidate being the learned value function in
simulation) and a smaller discount factor (in this case γ = 0).

In Figure 6, we compare in simulation the results of using this standard fine-tuning approach
with those obtained with our method. For both approaches, we first pre-train a policy πφ and value
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function Vθ on a nominal set of dynamics using SAC and the reward r(xk, uk) = −0.1 (5α2
k +p2

k +
0.05u2

k) − 5 · 103 · 1(|pk| ≥ 0.3), and then perturb the parameters of the simulator to introduce
model mismatch for the fine-tuning phase. Specifically, we increase the weight and friction of the
cart by 200%; and the mass, inertia and length of the pendulum by a 25%. After doing this, we
randomly sample 10 initial conditions around the downright position (−0.05m ≤ p0 ≤ 0.05m,
−π + 0.05rad ≤ α0 ≤ π − 0.05rad, −0.05m/s ≤ ṗ0 ≤ 0.05m/s, −0.05rad/s ≤ α̇0 ≤
0.05rad/s). We label a trial as success if within 10 seconds of simulation, the pendulum is stabilized
in the set −0.12rad < α < 0.12rad, −0.3rad/s < α̇ < 0.3rad/s and the cart never gets out of
bounds (|p| < 0.3). The policy uφ trained with data from the nominal dynamics model does not
succeed for any of the 10 initial conditions due to the model mismatch. The baseline in Figure 6
is obtained by emptying the replay buffer and using data from the new environment to continue the
training process of uφ with the same reward r(xk, uk). On the other hand, as with the hardware
experiments, our method takes the learned value function Vθ from the nominal dynamics model and
learns an offset policy uψ using the modified reward r̂(xk, uk) = ∆Vθ(xk, uk)− 0.1 · (5α2

k + p2
k +

0.05u2
k). In Figure 6, we plot for 10 training random seeds the average original reward r(xk, uk)

and the cumulative number of successes of the validation episodes ran from the initial conditions
mentioned above. The x axis is the number of rollouts of fine-tuning data (each rollout consists of
10 seconds of data). As this figure clearly demonstrates, our approach is able to more rapidly learn
a reliable swing-up controller than the baseline. Moreover, as the plot on the left displays, even
though we are no longer optimizing for the original reward, by rapidly converging to a stabilizing
controller our method still performs better on the original reward than the benchmark.

The above results show that our approach effectively serves to fine-tune policies when the dy-
namics of the system change. In fact, we have artificially added a severe model mismatch and shown
that we can adapt to the new dynamics with a discount factor of 0. This is because the original value
function is still a ‘good’ CLF candidate for the new system. However, if the change in the dynam-
ics is drastic, or if the overall shape of the motion required to complete the task has to be greatly
modified, then the value function from the original dynamics may not be a good CLF candidate, and
our method might fail. We have observed that for the cartpole example our method is very robust to
variations in the parameters of the cart dynamics (in fact, in the above example we are multiplying
both friction and mass of the cart by a factor of 3), but that if we drastically reduce the length and
mass of the pendulum by a 50%, our method fails. We hypothesize that this might be related to
the underactuated nature of the pendulum dynamics. An interesting direction for future work would
therefore be to study under which conditions the original value function retains the CLF properties
for a new set of dynamics.

D.3 Bipedal Walking Results

In this section, we provide further details on applying our design methodology to fine-tune a model-
based walking controller for a bipedal robot. As mentioned in Section 4, we first design a CLF
around the target gait using the nominal model as in [15] to be used in our reward formulation. As
a benchmark comparison, we also train policies with a typical reward which penalizes the distance
to the target motion. For both approaches we use the SAC algorithm to optimize the policy. We
plot the best performance we have been able to obtain from each method by sweeping across dif-
ferent discount factors and algorithm hyper-parameters in Figure 7. In particular, the top of this
Figure depicts snapshots of the stable walking controller our method obtains after only 40k steps
of the environment, which corresponds to only 40 seconds of data given the 1kHz frequency of the
controller. The bottom left depicts the average tracking error during the training process for both
methods. Finally, the bottom-right plots the tracking error over a few representative rollouts. Note
that the tracking error for both methods ‘jumps’ each time one of the feet impacts the ground. These
jumps occur when the swing-foot impacts with the ground and are an unavoidable feature of the
environment. Thus, in this context a stable walking controller needs to rapidly converge to the target
motion over the course of the next step to maintain stability of the walking motion. As the learn-
ing curve demonstrates, our approach is able to significantly reduce the average tracking error per
episode after only 40k steps of the environment, while the baseline does not reach a similar level
of performance even after 1.2 million steps. As the rollouts in the bottom-right demonstrate, our
method learns a desirable tracking controller which smoothly decreases the tracking error between
each impact event after only 40 thousand steps. In contrast, after 40 thousand steps the baseline
controller diverges from the target motion, corresponding to a fall after only a few steps. After 620
thousand steps, the baseline controller is able to maintain the stability of the walking motion, yet the
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Figure 7: (Top) Snapshots of RABBIT [49], a five-link bipedal robot, successfully walking with
our learned controller in the PyBullet simulator [50]. (Bottom-Left) Average tracking error (lower
is better) per episode at different stages of the training process when fine-tuning a model-based
walking controller under model mismatch. In blue, using our CLF-based reward formulation and
SAC, the robot learns a stable walking gait with only 40k steps (40 seconds) of training data. In
orange, with a baseline that uses a typical reward penalizing the tracking error to the target gait, the
training takes longer to converge and does not achieve the same performance. The results show the
best performance for both method across different discount factors and training hyper-parameters.
(Bottom-Right) Comparison of the tracking error of roll-outs of different learned walking policies.
In blue, a policy learned with 40k steps of the environment using our CLF-based reward. In dashed
green, a policy learned using the baseline reward with 40k steps of the environment. In orange, a
policy learned using the baseline reward with 620k steps of the environment (best baseline policy).
The jumps in tracking error occur at the swing-leg impact times. The policy learned with our reward
formulation clearly outperforms the baseline, even when the baseline has 15 times as much data.

tracking performance is notably worse than our method at 40 thousand steps, despite having access
to around 15 times as many samples.

D.4 Inverted Pendulum Results

The states of the system are x = (θ, θ̇) ∈ R2, where θ is the angle of the arm from the vertical
position, and the input u ∈ R is the torque applied to the joint. In each of the reinforcement
learning experiments reported in Section 4 for this system we sample initial conditions over the
range −π ≤ θ ≤ π and −0.1 < θ̇ < 0.1.

We first train a stabilizing controller using a ‘typical’ cost function of the form rk = −‖xk‖22 −
0.1‖uk‖22, and then train a controller using the reshaped cost rk = − [W (F (xk, uk))−W (xk)] −
‖xk‖22 − 0.1‖uk‖22. We use the soft actor critic (SAC) algorithm [51] and each training epoch
consisted of 5 episodes with 100 simulation steps each, where each time step for the simulator is 0.1
seconds. For both forms of cost function, we sweep across different values of discount factors (from
γ = 0 to γ = 0.95 in increments of 0.05 and also tried γ = 0.99) to 1) determine which values of
discount factors lead to stabilizing policies and 2) which discount factor allows the agent to learn a
stabilizing controller most rapidly. To determine whether a given controller stabilizes the system we
randomly sample 20 initial conditions and see if each trajectory reaches the set {x ∈ Rn : ‖x‖2 <
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Figure 8: Learning curves for an inverted pendulum system under different input constraints. The curves
plotted correspond to the smallest discount factors that led to stabilizing policies. On the left, the obtained
learning curves use a CLF in the reward. On the right, the reward does not include the CLF term. The black
dots denote the first stabilizing policy for each training. For each setting we plot the learning curve for the
discount factor that achieved the best performance.

0.05} within 20 seconds of simulation. For each scenario, the smallest discount factor that lead to a
stabilizing controller was also the discount factor that cause the agent to learn a stabilizing controller
with the least amount of data.

Training curves for each of the critical values of the discount factor are depicted in Figure 8
for each of the cost formulations and input constraints. Each curve indicates the average reward
per epoch across 10 different training runs and reports the best results for each scenario after an
extensive hyper-parameter sweep. We normalize each training curve so that a reward of 0 indicates
the average reward during the first epoch, while a reward of 1 is the largest average reward obtained
across all epochs. On each of the training curves the black dot denotes the first training epoch at
which a stabilizing controller was obtained.

As illustrated by the plots in Figure 8 (a), the addition of the CLF enables our method to more
rapidly learn a stabilizing controller in each setting and consistently decreases the amount of data
that is needed to learn a stabilizing controller, even when W is not a global CLF for the system.
However, the effects are more pronounced when the input constraints are less restrictive and W is
a better candidate CLF. For example, when |u| < 20 our approach is able to learn a stabilizing
controller in 5 iterations, whereas it takes 92 iterations with the original cost (our approach takes
∼ 5.4% as many samples). Meanwhile when |u| < 4 our approach takes 198 iterations while
the original cost takes 389 iterations (our approach takes ∼ 51% as many samples).Moreover, we
observe that larger discount factors are required when |u| ≤ 7 and |u| ≤ 4, as W becomes a poorer
candidate CLF for these cases.
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