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Abstract—Optimal control is an essential tool for stabiliz-
ing complex nonlinear systems. However, despite the extensive
impacts of methods such as receding horizon control, dynamic
programming and reinforcement learning, the design of cost
functions for a particular system often remains a heuristic-
driven process of trial and error. In this paper we seek to
gain insights into how the choice of cost function interacts with
the underlying structure of the control system and impacts the
amount of computation required to obtain a stabilizing controller.
We treat the cost design problem as a two-step process where
the designer specifies outputs for the system that are to be
penalized and then modulates the relative weighting of the inputs
and the outputs in the cost. To characterize the computational
burden associated to obtaining a stabilizing controller with a
particular cost, we bound the prediction horizon required by
receding horizon methods and the number of iterations required
by dynamic programming methods to meet this requirement. Our
theoretical results highlight a qualitative separation between what
is possible, from a design perspective, when the chosen outputs
induce either minimum-phase or non-minimum-phase behavior.
Simulation studies indicate that this separation also holds for
modern reinforcement learning methods.

I. INTRODUCTION

The stabilization of complex nonlinear systems is one
of the most fundamental and important problems in control
theory. Approaches based on optimal control [1], [2], [3] form
an essential set of tools for solving the stabilization problem
and have seen extensive real-world deployment [4], [5]. The
primary appeal of optimal control is that it allows the user to
implicitly encode potentially complex stabilizing controllers
as the feedback solutions to certain infinite horizon optimal
control problems which are relatively simple to specify.

In principle, obtaining an optimal infinite horizon con-
troller requires solving the Hamilton-Jacobi-Bellman partial
differential equation [6]. However, for general nonlinear prob-
lems it is rarely possible to solve the equation in closed
form. This has lead to the development of numerous com-
putational methods which approximate the optimal infinite
horizon controller such as dynamic programming [2], receding
horizon control [1] and approximate dynamic programming [2]
(including modern reinforcement learning methods [7]). In one
way or another, the parameters of these methods can be used
to trade-off the amount of computation that is used with the
quality of the resulting approximation.

1Authors are with the EECS department at the University of California,
Berkeley. This work was supported by HICON-LEARN, Defense Advanced
Research Projects Agency award number FA8750-18-C-0101, and the SRC
JUMP CONIX Research Center.

In this paper we ask: how does the chosen cost function
interact with the inherent geometry of the control system to
affect the amount of computation needed to obtain a stabilizing
controller? To make this question tractable, we consider a
two-stage cost design process described below. To concretely
characterize the amount of computation needed to obtain a
stabilizing controller with a given cost, our theoretical analysis
focuses on receding horizon control (RHC) and the dynamic
programming algorithm known as value iteration (VI). For
these methods we respectively characterize the prediction
horizon T > 0 and number of iterations k ∈ N the two
methods require to stabilize the system. Prior work has shown
a direct relationship between these two quantities [6], thus we
primarily analyze RHC schemes and then use these results
to characterize VI. On the empirical side, we investigate how
the choice of cost function affects the amount of data modern
reinforcement learning algorithms need to stabilize the system.

The first step in the cost design process we consider is to
select a set of outputs y = h(x) to penalize in the objective,
where x is the state of the system. We will then consider
running costs of the form `ε(x, u) = ‖h(x)‖22 + ε‖u‖22, where
u is the system input and the choice of weighting parameter
ε > 0 represents the second design choice. Intuitively, as
ε > 0 is made smaller, the running cost encourages controllers
which more aggressively drive the outputs to zero. During our
analysis, we will first fix a set of outputs and investigate how
the choice of ε > 0 affects the amount of computation needed
to obtain a stabilizing controller.

Our theoretical analysis draws on insights from two dis-
tinct lines of work. The first insight comes from the receding
horizon literature [8], [9], [10], which relates the optimal
infinite horizon performance for a given cost to the prediction
horizon needed by RHC schemes to stabilize the system.
Informally, the smaller the infinite horizon cost, the shorter the
prediction horizon T > 0 needed to stabilize the system. The
rough intuition here [10] is that as the optimal infinite horizon
cost becomes smaller the optimal controller must necessarily
drive the running cost to zero more rapidly, and this myopic
behavior is easier for RHC schemes to approximate with a
short prediction horizon.

The second line of work is the ‘cheap control’ literature
[11], [12], [13], [14], which studies the class of cost functions
we consider and draws a separation between minimum-phase
(MP) and non-minimum-phase (NMP) systems. In particular,
this work bounds the performance of the optimal infinite
horizon controller as ε→ 0. As the limit is taken the optimal
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controller drives the outputs to zero as rapidly as possible
while ensuring the closed-loop system is asymptotically stable.
For MP systems, under suitable conditions, the infinite horizon
performance can be made arbitrarily small by taking ε→ 0, as
a high-gain output-zeroing controller will not destabilize the
zeros. However, for NMP systems the unstable zero dynamics
present a fundamental barrier to making the infinite horizon
performance arbitrarily small, as the optimal controller cannot
myopically drive the outputs to zero and must instead ‘steer’
the outputs to stabilize the zeros [11].

We build on these perspectives by demonstrating that when
the chosen outputs lead to MP behavior the prediction horizon
T > 0 needed for RHC schemes to stabilize the system
can be made arbitrarily small by making ε > 0 sufficiently
small. Thus, when the system is MP, the user can consistently
decrease the computational burden of obtaining a stabilizing
controller by using costs which encourage myopically driving
the outputs to zero. In sharp contrast, for NMP systems as we
take ε→ 0 the prediction horizon needed to stabilize the sys-
tem actually increases and becomes unbounded. Thus, ‘high-
performance’ infinite horizon optimal controllers which zero
the outputs as rapidly as possible are difficult to approximate
in the NMP case but not in the MP case (using RHC and VI).
Moreover, we identify a class of passively unstable NMP sys-
tems for which there is a minimum prediction horizon T > 0
that is needed to stabilize the system for all choices of ε > 0.
Taken together, these results demonstrate that NMP dynamics
constitute an obstacle, from a computational perspective, to
constructing a stabilizing controller. Our simulation studies
with reinforcement learning further support this perspective.

II. INFINITE HORIZON OPTIMAL CONTROL, RECEDING
HORIZON APPROXIMATIONS, AND VALUE ITERATION

We will consider systems of the form:

ẋ = f(x) + g(x)u, x(0) = x0, (1)

where x ∈ Rn is the state, x0 ∈ Rn is the initial condition and
u ∈ Rq is the input. We will assume that the maps f : Rn → R
and g : Rn → Rn×q are twice continuously differentiable and
that f(0) = 0. For each T ∈ R ∪ {∞} we will let UT denote
the set of controls of the form u : [0, T ] → Rq which are
measurable and essentially bounded.

A. Infinite Horizon Optimal Control

In this section we will consider a generic infinite horizon
optimal control problem of the form:

inf
u(·)∈U∞

J∞(u(·);x0) =

∫ ∞
0

`(x(t), u(t))dt, (2)

where (x(·), u(·)) are subject to (1) and ` : Rn × Rq → R is
a twice continuously differentiable running cost which is non-
negative, strictly convex in u, and satisfies `(0, 0) = 0. To the
infinite horizon cost we associate the value function:

V∞(x0) = inf
u(·)∈U∞

J∞(u(·);x0).

We assume that V∞ is continuous, positive definite, bounded
on bounded sets, and that there exists a control which achieves
the optimal performance, namely, V∞(x0) = J∞(u(·);x0)
for some u ∈ U∞. We will implicitly make these standard
assumptions for each of the costs used later in the paper.

It is well-known that V∞ can be obtained, in principle, as
a solution to the Hamilton-Jacobi-Bellman equation (see e.g.
[6, Chapter 3.2]) and used to synthesize an optimal stabilizing
feedback controller u∞ : Rn → Rq for the cost. This controller
is optimal in the sense that when applied to the system it
achieves the smallest possible cost from each initial condition.

B. Receding Horizon Control

Next, we discuss receding horizon approximations to the
optimal infinite horizon controller u∞. These schemes use a
finite horizon approximation to (2) of the form:

inf
u(·)∈UT

JT (u(·);x0) =

∫ T

0

`(x(t), u(t))dt, (3)

where T > 0 is a finite prediction horizon. The value function
associated to the approximation is:

VT (x0) = inf
u(·)∈UT

JT (u(·);x0).

To ease exposition we assume that for each T > 0 and x0 ∈
Rn there exists a unique minimizer uT (·;x0) ∈ UT for the
optimal control problem, and we will let xT (·;x0) denote the
corresponding state trajectory. However, we note that in the
case where there are multiple optimal controls for a given
initial condition the following discussion goes through if any
of these control signals are used.

For each prediction horizon T > 0 and sampling rate T ≥
∆t > 0, receding horizon schemes approximate the infinite
horizon controller u∞ with a sampled data control law of the
form uT,∆t(t;x0) = uT (t − tk;xT,∆t(tk;x0)) for each t ∈
[tk, tk+1), where the tk = k∆t are sampling instances and
xT,∆t(·;x0) is the state trajectory produced by the receding
horizon scheme from the initial condition x0 ∈ Rn. In words,
at each sampling instant tk the receding horizon controller
solves the finite horizon optimal control problem (3) from the
current system state, applies the resulting open loop control
for ∆t seconds, and then repeats the process at time tk+1.

At their core, stability results from the literature [15],
[1] are founded on the notion that as T > 0 increases the
RHC scheme more closely approximates the infinite horizon
continuous-time feedback controller u∞, and the quality of
this approximation is characterized by how the values of VT
converge to those of V∞. However, increasing T comes at the
cost of additional computational complexity when solving (3).
We next describe a specific stability result used in our analysis,
which upper-bounds the prediction horizon T > 0 needed to
ensure stability. In what follows, we will let σ : Rn → R be a
fixed positive definite function which will be used to measure
the distance of the state to the origin.



Assumption 1. There exists ᾱV > 0 such that:

V∞(x) ≤ ᾱV σ(x) ∀x ∈ Rn.

Assumption 2. There exists a continuously differentiable
function W : Rn → R and ᾱW , αW ,KW > 0 such that for
each x ∈ Rn and u ∈ Rq:

αWσ(x) ≤W (x) ≤ ᾱWσ(x)

d

dx
W (x)[f(x) + g(x)u] ≤ −KWσ(x) + `(x, u).

Intuitively, the smaller the constant ᾱV > 0 in Assumption
1 the more rapidly the infinite horizon optimal controller must
drive the instantaneous performance to zero. The existence of
the map W in Assumption 2 ensures that the state measure
σ(·) is detectable with respect to the loss function `, in the
sense that if `(x, u) = 0 then we must have d

dtW (x) < 0
if x 6= 0. The following result, which we prove in the
supplementary document [16], is essentially a continuous-time
adaptation and specialization of the stability result from [1]
which is stated for discrete-time receding horizon control:

Theorem 1. Let Assumptions 1 and 2 hold. Then the receding
horizon controller uT,∆t will asymptotically stabilize (1) for
each for each T ≥ ∆t ≥ 0 such that:

T >
ᾱV (ᾱV + ᾱW )

KWαW (1−M(∆t))
(4)

where

M(∆t) = exp(−KW
αW∆t

ᾱV + ᾱW
)] < 1. (5)

Note how the bound on the required prediction horizon
T > 0 depends on the performance of the infinite horizon cost.
As ᾱV decreases we can ensure asymptotic stability of the
closed-loop system by using RHC schemes with smaller and
smaller prediction horizons. This will form the basis for our
stability results for minimum-phase systems, when combined
with the cheap control results in Section III-C.

C. Connections Between RHC and VI

Again using a sampling interval ∆t > 0, the value itera-
tion (VI) algorithm constructs a sequence of approximations
V 1, V2, . . . to the infinite horizon value function V∞ using the
following recursion with V 1(·) ≡ 0:

V k+1(x0) = inf
u∈U∆t

[ ∫ ∆t

0

`(x(t), u(t))dt+ V k(x(∆t))

]
.

(6)
For each k ∈ N let uk(·;x0) ∈ U∆t be a control which solves
the optimization on the right-hand side of (6). Under mild
conditions one can show that V k converges to V∞ as k →∞
(see [6, Chapter 3.3] for a more in depth discussion). The
algorithm produces a sampled-data control law of the form
uk,∆t(t;x0) = uk(t − tk;xk,∆t(tk)) for each t ∈ [tk, tk+1)
where xk,∆t(·;x0) is the state trajectory produced by the
control scheme from the given initial condition x0 ∈ Rn.

Using the Principle of Optimality (see e.g. [6, Prop 3.2]),
one can show that for each k ∈ N VI produces the estimate
V k = Vk·∆t. Moreover the k-th greedy control is characterized
for each x0 ∈ Rn by uk(·;x0) = uT (·;x0)|[0,∆t]. Thus,
the sampled data controller obtained after k steps of VI
with discretization parameter ∆t is equivalent to the receding
horizon controller with prediction horizon T = k∆t and re-
planning interval ∆t. Thus, the dynamic programming based
controller uk,∆t implicitly optimizes over the prediction hori-
zon T = k∆t, and there is a direct correspondence between
cases where RHC and VI will stabilize (1).

III. COST FORMULATION, NONLINEAR GEOMETRY, AND
THE CHEAP CONTROL LIMIT

We next introduce the cost functions we analyze in this
paper. We then highlight how the choice of outputs in the
cost interacts with the underlying geometry of the system in
Section III-B, and then briefly touch on analysis techniques
from the cheap control literature in Sections III-C and III-D.

A. Cost Formulation

For each ε > 0 and T > 0 we study the cost functions:

inf
u(·)∈U∞

Jε∞(u(·);x0) =

∫ ∞
0

‖h(x(t))‖22 + ε‖u(t)‖22dt, (7)

inf
u(·)∈UT

JεT (u(·);x0) =

∫ T

0

‖h(x(t))‖22 + ε‖u(t)‖22dt, (8)

where h : Rn → Rp is a map constructed by the user, which
is assumed to be twice continuously differentiable and such
that h(0) = 0. The map h captures the physical quantities of
the system which are the most important to drive to zero to
meet the control objectives of the designer.

To each of these problems we associate value functions:

V ε∞(x0) = inf
u∈U∞

Jε∞(u(·);x0), (9)

V εT (x0) = inf
u∈UT

JεT (u(·);x0). (10)

We assume that for each ε > 0 V ε∞ is positive definite,
continuous and bounded on bounded sets so that the infinite
horizon controller will stabilize the system [6].

B. Normal Forms, Zero Dynamics and Structural Assumptions

To better understand how the cost functions introduced in
the previous section interact with the geometry of the state-
space model (1), let us formally append a set of outputs to the
system and form an input-output model of the form:

ẋ = f(x) + g(x)u (11)
y = h(x),

where y ∈ Rp. As alluded to above, the perspective here is that
the choice of the running cost implicitly induces this structure,
and our goal throughout the paper is to understand how this
choice impacts the design trade-offs available to the user.



Thus, in this section we briefly review basic concepts from
nonlinear geometric control which shed light onto how the
choice of cost function interacts with the underlying structure
of the dynamics. In particular, we discuss how to construct a
‘normal form’ associated to the input-output system (11), and
also introduce several simplifying assumption we will make
throughout the paper. Our introduction to these concepts will
be brief, as they are covered in many standard references (e.g.
[17, Chapter 9]). We first make the following Assumption:

Assumption 3. The number of inputs is equal to the number
of outputs, namely, q = p.

We make this assumption as the construction of normal
forms is more straightforward for ‘square’ systems. We discuss
the impact of removing this structural condition, along with
Assumptions 4 and 5 below, in Section IV-D.

To obtain a more direct expression relating the evolution
of the outputs to the inputs, one can repeatedly differentiate
each of the outputs along the dynamics (1) until an expression
of the following form is obtained:[

y
(r1)
1 . . . y

(rq)
q

]T
= b(x) +A(x)u, (12)

where y
(k)
j denotes the k-th time derivative of yj = hj(x)

(the j-th entry of the output) and the rj are positive integers.
If the matrix A(x) is bounded away from singularity for each
x ∈ Rn then we say that the system has a well-defined (vector)
relative degree r̄ = (r1, r2, . . . , rq). In this case there exists a
valid change of coordinates x → (ξ, η) such that in the new
coordinates the dynamics are of the form:

ξ̇ = Fξ +G

[
b̄(ξ, η) + Ā(ξ, η)u

]
(13)

η̇ = q̄(ξ, η) + P̄ (ξ, η)u

y = Cξ,

where (F,G) is controllable, (F,C) is observable and Ā(ξ, η)
is bounded away from singularity for each (ξ, η) ∈ Rn. Here
the coordinates ξ ∈ R|r̄| capture the outputs and dervatives
up to the appropriate order and η ∈ Rn−|r̄| completes the
change of coordinates. Namely, ξ contains entries of the form
ξj,k = y

(k−1)
j for j = 1, . . . , q and k = 1, . . . , rj .

Next we discuss two simplifying assumption we will use,
which are in line with the cheap control literature [18]:

Assumption 4. There exists r ∈ N such that the vector relative
degree of the system (1) is r̄ = (r, r, . . . , r).

Under assumption 4, we can arrange ξ = (ξ1, ξ2, . . . ξr)
and the F , G and C matrices in (13) to be of the form:

F =


0 I . . . 0
...

. . .
...

0 0 . . . I
0 0 . . . 0

 G =


0
...
0
I

 , C =
[
I 0 . . . 0

]
.

(14)

Namely, ξ1 = (y1, . . . , yq) represents the outputs and for k =

2, . . . , r the coordinates ξk = (y
(k−1)
1 , . . . , y

(k−1)
q ) capture the

(k − 1)− th derivatives of the outputs.
Next, we will restrict the structure of the interconnection

between the ξ and η subsystems. We say that the input-
output system (1) can be put into strict feedback form if the
η coordinates can be chosen so that the normal form of the
dynamics takes the following form:

ξ̇ = Fξ +G[b̄(ξ, η) + Ā(ξ, η)u] (15)
η̇ = f̄0(η) + ḡ0(η)ξ1

y = ξ1 = Cξ,

where f̄0 : Rn−|r̄| → Rn−|r̄| and ḡ0 : Rn−|r̄| → R(n−|r̄|)×q .

Assumption 5. The input-output system (1) can be put into
the strict feedback form (15).

This assumption forbids the input and the derivatives of
the outputs to appear directly in the dynamics of the zeros,
and prevents the so-called peaking phenomena [19], which
we discuss in more detail in Section IV-D. In the special case
of linear dynamics the system can always be put into strict
feedback form when Assumption 4 is satisfied (see e.g. [14]).

For this class of system the zero dynamics are obtained by
setting the outputs to zero:

η̇ = f̄0(η). (16)

We say that the input-output system is minimum-phase (MP)
if the zero dynamics are asymptotically stable, and exponen-
tially minimum-phase if they are exponentially stable. We say
that this system is non-minimum-phase (NMP) if it is not
minumum-phase, and exponentially non-minimum-phase if the
dynamics η̇ = −f̄0(η) are exponentially stable. Finally, if
|r̄| = n then no η coordinates are needed in the coordinate
transformation, and the system is called full-sate linearizable.
By way of convention, systems which are full-state linearizable
are trivially (exponentially) minimum-phase.

C. The Cheap Control Limit

The focus of the cheap control literature has been to
characterize the structure of the optimal value function V ε∞
and corresponding optimal controller uε for small values of
ε > 0. In particular, the limiting value limε→0 V

ε
∞(x) provides

qualitative insight into how difficult it is to drive the chosen
outputs to zero from the state x ∈ Rn while also stabilizing the
internal dynamics. The essential result from the literature is a
qualitative separation between the performance limitations of
MP and NMP systems. While the majority of the literature has
focused on the case where the dynamics are linear [13], [14],
[20], [11] and [18] extend these results to nonlinear strict-
feedback systems of the form (15). An integral part of the
analysis for strict feedback systems is the ‘minimum energy
problem’ which is formulated using the normal form (15):

V̂0(η0) = inf
ξ1(·)

J0(ξ1(·); η0) =

∫ ∞
0

‖ξ1(t)‖22dt (17)



where η̇ = f0(η) + g0(η)ξ1, the output ξ1(·) is viewed as
an ‘input’ to the zero subsystem and the infimum in (17) is
understood to be over ξ1(·) which drive η(t)→ 0 asymptoti-
cally. Thus, V̂0(η) can be interpreted as the minimum ‘energy’
of the outputs (in an L2 sense) that must be accrued by a
feedback controller which stabilizes the internal dynamics.
When V̂0 is continuously differentiable, an ‘optimal controller’
for the zeros subsystem is given by ξ1(t) = µ0(η(t)), where
µ0 : Rn−|r̄| → Rq is obtain from the HJB PDE associated to
the reduced problem (17).

Crucially, one may observe that if the system is MP
then V̂0(·) ≡ 0 since no ‘energy’ must be expended to
stabilize the zeros. On the other hand, when the system is
NMP we will have V̂0(·) 6≡ 0 since the outputs must be
‘steered’ to stabilize the zeros. In both cases, under suitable
technical conditions, the performance limitation for the system
is given by limε→0 V̂

ε
∞(ξ, η) = V̂0(η), where V̂ ε∞(ξ, η) is the

representation of the value function in the normal coordinates.
Thus, for MP systems the infinite horizon cost can be made
arbitarily small by taking ε→ 0, while there is a fundamental
limitation for NMP systems. For MP systems as ε → 0 the
optimal controller drives the outputs directly to zero more and
more rapidly, while in the NMP case a high-gain feedback
controller drives ξ(t)→ µ0(η(t)) to stabilize the zeros [18].

D. Fast-Slow Representations

As mentioned above, singular perturbation techniques play
a crucial role in obtaining the aforementioned results and play
an essential role in our analysis. Even though most of our
arguments are relegated to the supporting document [16], it is
worthwhile to outline the broad strokes of the analysis here.

In particular, first define the new parameter ε̃ > 0 such that
ε = ε̃2r so that we may rewrite the running as ‖ξ1‖22+ε̃2r‖u‖22.
If we then define the new coordinates

ξ̃ = S(ε̃)ξ and ũ = ε̃ru, (18)

where
S(ε̃) = diag(1, ε̃, ..., ε̃r−1) (19)

then the system (15) takes on the fast-slow representation:

ε̃
˙̃
ξ = F ξ̃ +G

[
ε̃r b̃(ξ̃, η) + Ã(ξ̃, η)ũ

]
(20)

η̇ = f̄0(η) + ḡ0(η)ξ̃1,

where b̃(ξ̃, η) = b̄(S(ε̃)−1ξ̃, η) and Ã(ξ̃, η) = Ā(S(ε̃)−1ξ̃, η)
and we have suppressed the dependence of these terms on ε̃.
In the re-scaled coordinates the infinite horizon cost becomes:

inf
ũ(·)∈U∞

J̃ ε̃∞(ũ(·); ξ̃0, η0) =

∫ ∞
0

‖ξ̃1(t)‖22 + ‖ũ(t)‖22dt. (21)

We will let Ṽ ε̃∞ denote the representation of the value function
in the new coordinates, and we define the reparameterized
finite horizon cost J̃ ε̃T and optimal performance Ṽ ε̃T in an
analogous way. The form of the re-scaled cost function and
dynamics clearly evokes the intuition that we should expect a
fast transient for the outputs for small values of ε̃ > 0.

IV. THE COMPUTATIONAL COSEQUENCES OF COST
DESIGN FOR NONLINEAR OPTIMAL CONTROL

We are now ready to present our theoretical results and
draw a qualitative distinction between what is possible, from
a computational perspective, when the outputs y = h(x)
correspond to either minimum-phase or non-minimum-phase
behavior. Due to space constraints, proofs of the following
results are relegated to [16] and we only outline the main
arguments here. In Section IV-A we introduce bounds on V ε∞
and V εT which are used in the proofs of the main results and
provide qualitative insight into how well receding horizon con-
trollers approximate uε∞. We then discuss our stability result
for minimum-phase systems in Section IV-B and instability
results for non-minimum-phase system in Section IV-C.

A. Performance Bounds

Our results require the following growth assumptions:

Assumption 6. There exists C > 0 such that the following
conditons hold for each x ∈ Rn and (ξ, η) ∈ Rn :

‖f(x)‖2 ≤ C‖x‖2, ‖b̄(ξ, η)‖2 ≤ C (‖ξ‖2 + ‖η‖2) ,

‖g(x)‖2 ≤ C, ‖Ā(ξ, η)‖2 < C,

‖f̄0(η)‖2 ≤ C‖η‖2, ‖ḡ0(η)‖2 ≤ C.

Under this regularity condition we can obtain the following
bound on the infinite horizon cost for MP systems:

Lemma 1. Let Assumptions 3-6 hold. Further assume that
(15) is exponentially minimum-phase (including full-state lin-
earizable). Then there exist K̂ > 0 such that for each
0 < ε̃ ≤ 1 we have for each (ξ̃, η) ∈ Rn :

Ṽ ε̃∞(ξ̃, η) ≤ K̂
(
ε̃‖ξ̃‖22 + ε̃2r‖η‖22

)
. (22)

The proof uses the fast-slow representation of the dy-
namics (20) and bounds the infinite horizon performance
of a sub-optimal feedback linearizing controller of the form
ũ = Ã−1(ξ̃, η)[−ε̃r b̃(ξ̃, η) +Kξ̃] where F +GK is Hurwitz,
which drives the ξ̃ coordinates to zero exponentially at a rate
on the order of 1

ε̃ . Because the zero dynamics are exponentially
minimum-phase, and we have restricted the interconnection
between the two systems with Assumption 5, this high gain
feedback does not destabilize the zeros. As expected, Lemma
1 implies that the infinite horizon optimal controller drives the
outputs to zero more and more rapidly as ε̃→ 0. In contrast,
we recall from Section III-C that Ṽ ε̃∞ can be lower-bounded
uniformly in the case where the system is NMP, since the
outputs must be ‘steered’ so as to stabilize the zeros.

Next, we discuss a bound on the finite-horizon perfor-
mance which holds for both MP and NMP systems:

Lemma 2. Let Assumptions 3-6 hold. Then for each T̄ > 0,
there exists K̄ > 0 and ε̄ > 0 such that for each T̄ ≥ T > 0
and ε ∈ (0, ε̄] we have for each (ξ̃, η) ∈ Rn:

Ṽ ε̃T (ξ̃, η) ≤ K̄
(
ε̃‖ξ̃‖22 + ε̃2r‖η‖22

)
. (23)



The result is again obtained by bounding the performance
of a linearizing controller which drives the ξ̃ coordinates to
zero. Unlike in the infinite horizon case, on bounded time
horizons the optimal control does not need to drive the zeros
to the origin to achieve a finite cost, which vanishes as ε̃→ 0.
Indeed, as the preceding bound indicates, and as we show
more formally in the proof of Theorem 3 in [16], when the
prediction horizon T > 0 is bounded and ε̃ > 0 is small the
optimal control always drives the outputs toward zero in a
mypoic fashion. In the NMP case, this will mean that RHC
schemes fails to stabilize the zero dynamics when ε̃ is small,
unless a very large prediction horizon is used.

We provided the previous bound in terms of the rescaled
coordinates (ξ̃, η) and the parameter ε̃ = ε

1
2r , as doing so

cleanly separates how the bound depends on the outputs (and
their derivatives) and the zeros. We note that in the original
representation the bounds on V εT (x) and V ε∞(x) will both be on
the order of O(ε

1
2r ), providing insight into how the relative

degree affects the growth of the bound. We state our main
results below using the original representation for the problem.

B. Stability Results and Design Trade-offs for MP Systems

We are ready to state our main result for MP systems.
In the proof of the result we construct a function W which
satisfies Assumption 2, and then use the performance bound
in Lemma 1 to show the following:

Theorem 2. Let Assumptions 3-6 hold. Further assume that
(15) is exponentially minimum-phase (including full state-
linearizable). Then for every fixed T ≥ ∆t > 0 there exists
ε̄ > 0 such that for each ε ∈ (0, ε̄] the receding horizon
controller uεT,∆t(·;x0) renders the closed-loop system globally
exponentially stable.

Thus, in the MP case the designer can consistently de-
crease the amount of computation needed to obtain a stabi-
lizing RHC controller (as measured by the prediction horizon
T > 0) by decreasing ε > 0 and encouraging the controller
to rapidly drive the outputs to zero. In some applications a
fast transient for the outputs may be desirable, and there is no
tension between meeting the desired performance objectives
and the computational burden of the RHC schemes. In other
scenarios the high-gain RHC controllers corresponding to
small values of ε > 0 may cause undesirable effects such as
chattering or use too much input to meet design specifications.
In either case, when the chosen outputs are MP, the designer
retains the freedom to fully explore these design trade-offs.

C. Instability Results, Design Trade-offs and Fundamental
Limitations for NMP Systems

Our main result for NMP systems in Theorem 3 below
highlights a class of NMP systems for which there exists a
uniform lower-bound on the prediction horizon T > 0 required
to stabilize the system with receding horizon methods which
holds for all choices of ε > 0. We first introduce supportive
Lemmas which provide some intuition for this result:

Lemma 3. Let Assumptions 3-6 hold. Further assume that
the system (11) is globally exponentially NMP. Then for each
T̄ > 0 there exists ε̄ > 0 such that for each ε ∈ (0, ε̄] and
T̄ ≥ T ≥ ∆t > 0 the receding horizon controller uεT,∆t fails
to stabilize (1).

In sharp contrast to the MP case discussed above, Lemma
3 indicates that in the NMP case as we take ε → 0 the
time horizon needed for RHC schemes to stabilize the system
actually increases and becomes unbounded. In other words,
as ε → 0 and the optimal stabilizing controller uε∞ pushes
up against the inherent performance limitations of the system,
it becomes more difficult to approximate uε∞ with receding
horizon schemes (and thus also the VI method). In extreme
cases, an RHC controller formulated with small ε > 0 and
insufficiently large T > 0 can actually destabilize a passively
stable NMP system. To see this, consider the linear system:[

ξ̇
η̇

]
=

[
−2 1
−10 1

] [
ξ
η

]
+

[
1
0

]
u, y = ξ. (24)

Although the un-driven dynamics are exponentially stable,
Lemma 4 predicts that for any T ≥ ∆t > 0 the RHC controller
uεT,∆t will destabilize the system if ε > 0 is too small.

While Lemma 3 deals with ‘small’ values of ε > 0, the
following result gives conditions under which ‘large’ values
of ε > 0. For passively stable systems such as (24), when
ε > 0 is large the RHC controller will not exert enough control
effort to destabilize the system [21] for any value of T > 0.
However, when the dynamics are passively unstable, ‘large’
values of ε > 0 prevent the RHC controller from exerting
enough control effort to stabilize the system unless T > 0 is
sufficiently large:

Lemma 4. Let Assumptions 3-6 hold. Further assume that
the dynamics ẋ = −f(x) are exponentially stable. Then for
each ε̄ > 0 there exists T̄ > 0 such that for each ε > ε̄ and
T̄ ≥ T ≥ ∆t > 0 the receding horizon controller uεT,∆t fails
to stabilize (1).

We combine the preceding results to obtain the following:

Theorem 3. Let Assumptions 3-6 hold. Further assume the
additional hypotheses of Lemmas 3 and 4 hold. Then there
exists T̄ > 0 such that for each ε > 0 and T̄ ≥ T ≥ ∆t > 0
the receding horizon controller uεT,∆t fails to stabilize (1).

Thus, unlike in the MP case, NMP dynamics can impose
a structural obstacle limiting how small the system designer
can make the prediction horizon while ensuring the stability of
the closed-loop system. Taken together, the preceding results
demonstrate that the presence of NMP dynamics (with respect
to the outputs chosen when synthesizing the cost function)
limits the capabilities of the designer and restricts the set of
design trade-offs that can be exploited.

D. Relaxing Assumptions

Finally we briefly discuss when the technical assumptions
made in the paper can be relaxed and when there are obstacles



to doing so. First, let us discuss the Assumption 5, which
stipulates that the system can be put into strict feedback
form. For more general nonlinear systems of the form (13),
driving the outputs to zero with high-gain feedback control
may destabilize the zero dynamics, even when the system
is exponentially MP, due to the well-documented peaking
phenomena (see.[19] for a comprehensive discussion). Thus,
without additional structural assumptions about the intercon-
nection between the two subsystems we cannot guarantee that
the system does not suffer from performance limitations.

Next, consider Assumption 3, which stipulates that the
number of inputs equals the number of outputs. As long as
our other structural assumptions hold, there is little difficulty in
extending our results to the case where there are fewer inputs
than outputs, so long as the outputs can be decoupled by state
feedback. On the other hand, when there are more outputs
than inputs the results from [22] indicate that the input-output
system will suffer from performance limitations, as the output
channels cannot be decoupled by state feedback and driven to
zero at arbitrary rates.

Assumption 4, which stipulates that each of the outputs
has the same relative degree, is made primarily to streamline
analysis. When the outputs have different relative degrees,
instead of inducing a fast-slow system of the form (20), the
cheap control problem induces a singular perturbation problem
with multiple time-scale which is much more cumbersome
to analyze [23]. Nonetheless, we believe an extension of our
results to these cases is possible.

E. Value Iteration and Other Computational Considerations

In practice, numerical VI algorithms typically use a very
small time-step ∆t > 0. Using the correspondence between
RHC and VI discussed in Section II-C, in the MP case Theo-
rem 2 indicates that for a fixed ∆t we can reduce the number
of iterations VI requires to produce a stabilize controller by
decreasing ε > 0. In particular, the result demonstrates that
there exists ε̄ > 0 sufficiently small such that for each ε ∈ (0, ε̄]
VI will produce a controller which stabilizes the system after
only one iteration. On the other hand, Theorem 3 indicates
that there may be a lower-bound to how many iterations are
required to stabilize the system in the NMP case.

An important direction for future work is to characterize
how issues related to numerical discretization affect the quali-
tative results developed here, where we have studied idealized
versions of RHC and VI in which continuous-time optimal
control problems are solved as a subroutine. While this has
allowed us to clearly characterize when interactions between
the cost function and the feedback geometry of the system
lead to certain fundamental limitations, the high-gain feedback
controllers produced by VI and RHC as we take ε → 0 will
lead to numerical stability issues for practical implementations
of these methods. For example, in the face of stiff dynamics
grid-based VI methods require a very fine mesh to maintain
numerical stability, which increases the computational burden
of the method. Thus, broadly speaking, we should expect

the limitations of numerical approximations schemes to add
an additional layer of computational bottlenecks to the ones
considered here.

V. NUMERICAL EXPERIMENTS WITH REINFORCEMENT
LEARNING

While the preceding theoretical analysis applies only to
RHC and VI methods, it is reasonable to conjecture that the
trade-offs and fundamental limitations we have identified will
appear in one form or another for other methods which seek to
approximate infinite horizon optimal controllers. To test this
hypothesis, we now investigate how the choice of cost function
impacts the number of samples needed by modern reinforce-
ment learning methods to learn a stabilizing controller. These
methods are best viewed as noisy approximations to dynamic
programming [2]. Specifically, the following experiments use
the soft actor-critic algorithm [3], which can be viewed as
an approximation to the policy iteration algorithm [2]. Due
to space constraints, we only report a small subset of our
expirements here, leaving a more extensive evaluation to [16].

Flexible Link Manipulator: We consider a model for a
flexible link manipulator which can have both MP and NMP
outputs. The state is (x1, x2, x3, x4) = (θ1, θ̇1, θ2, θ̇2), where
θ1 is the angle of the arm from vertical and θ2 is the internal
angle of the motor. The dynamics are

ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

sin(x1) +K(x3 − x1)− β1x2

x4

K(x1 − x3)− β2x4 + u

 ,
where K > 1 is a spring coefficient used to model the
flexibility of the joint and β1, β2 ≥ 0 are friction coefficients.
One may observe that if the output y = x1 is chosen then
the system is full state lineraizable. However when the output
y = x3 is chosen the system has a relative degree of two and
the zeros are also two dimensional. In this case a Jacobian
linearization at the origin reveals that when the model is
friction-less (β1 = β2 = 0) the system is NMP but when
damping is present (β1, β2 > 0) the system is MP.

Here, we consider the model without friction, and inves-
tigate the damped case in [16]. We run experiments for the
output y = x1 in Figure 1 and the output y = x3 in Figure 2. In
each figure we plot the results obtained by training a controller
with the soft actor-critic algorithm using different values of
the weighting parameter ε > 0. The upper-right plot in each
figure depicts the average cost obtained by the algorithm
after obtaining access to different numbers of samples. While
the left-most plots depict a trajectory generated by the best-
performing controller that was obtained after 300,000 samples
of the dynamics. As the figures clearly show, the reinforcement
learning algorithm struggles to learn a stabilizing controller
when y = x3 for all values of ε > 0 that were tested.
However when y = x1 the algorithm is able to rapidly learn
a stabilizing controller for small values of ε > 0 but again
struggles when the parameter is large. Thus, we conclude that



Fig. 1. Flexible link manipulator without friction when y = x1.

Fig. 2. Flexible link manipulator without friction when y = x3.

the flat output y = x1 is a ‘better’ choice of output, and
observe that in these preliminary investigations the trade-offs
and limitations we characterized above appear to hold when
reinforcement learning algorithms are employed. Full details
of the experiments including hyper-parameters, initial state
distributions, etc. can be found in [16].

VI. CONCLUSION

In this paper, we studied how the geometry of a control
system introduces computational limitations when practically
solving for optimal controllers. Through the lenses of receding
horizon control and cheap control, we identify a separation in
qualitative behaviour between MP and NMP systems. Further
we experimentally verified these separations when a modern
RL algorithm is used as the controller-synthesis tool.

For future work, we also hope to characterize formally the
sample complexity of various reinforcement learning methods
when different cost functions are used. The primary challenge
for this program is the lack of rigorous convergence proofs
for the most common reinforcement learning methods. Indeed,
state-of-the art sample complexity guarantees are generally
restricted to the case of linear dynamics and require access
to an initial stabilizing controller [24], [25], yet experience
has shown that variations of these methods are none-the-less
able to synthesize stabilizing controllers from ‘scratch’.
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