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Abstract

This paper investigates optimal control problems formulated over a class of piecewise-smooth
vector fields. Instead of optimizing over the discontinuous system directly, we instead formulate
optimal control problems over a family of regularizations which are obtained by "smoothing out"
the discontinuity in the original system. It is shown that the smooth problems can be used to
obtain accurate derivative information about the non-smooth problem, under standard regularity
conditions. We then indicate how the regularizations can be used to consistently approximate the
non-smooth optimal control problem in the sense of Polak. The utility of these smoothing techniques
is demonstrated in an in-depth example, where we utilize recently developed reduced-order modeling
techniques from the dynamic walking community to generate motion plans across contact sequences
for a 18-DOF model of a lower-body exoskeleton.

1 Introduction

Non-smooth dynamical systems naturally arise when modelling a vast array of engineering systems, and
are familiar to researchers in areas ranging from the dynamic walking community [I], [2] to the domain of
power systems analysis [3]. However, despite the pervasive nature of discontinuous dynamics in systems
theory and control, optimizing system trajectories through unplanned sequences of discontinuities remains
a distinct technical challenge.

In particular, non-smooth systems are well known to display non-differentiability with respect to
initial conditions and inputs [4, Chapter 2, Section 11]. This fundamental departure from smooth control
theory has meant that the powerful optimization-based techniques designed for smooth control systems
[5] cannot be readily applied to the non-smooth setting. As an example, in the context of optimal
control, this has traditionally led to the implementation of restrictive practices, such as forming large
mixed-integer programs to reason over all possible "mode" sequences the trajectories may undergo [6], or
limiting the class of system behaviors by fixed the number and sequence of discontinuities the trajectory
of the system encounters a priori 7], [§].

1.1 Contributions

In this work, we formulate an optimal optimal control problem over a class of piecewise-smooth vector
fields. Rather than reasoning through the discontinuities of the system directly, we instead study a family
of regularizations which are obtained by "smoothing" the original non-smooth system along the discon-
tinuity. We then formulate approximate optimal control problems over these smooth control systems,
which can be solved using standard derivative-based techniques. Theoretical guarantees are discussed,
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demonstrating when the regularized problem can be used to obtain accurate derivative information about
the non-smooth problem. We then discuss how this result can be used to derive consistent approximations
in the sense of Polak [5].

Finally, we use the smoothing approach to generate trajectories for a model of a bipedal robot,
specifically a powered exoskeleton, which intermittently makes contact with the ground. In particular,
we build on [9], [10], which introduced a class of embedded reduced-order modeling techniques to simplify
the complexity of the motion planning problem. We believe the unification of these techniques represents
an important new direction for robotic trajectory optimization through contact.

1.2 Relation to the Literature

The roots of the smoothing technique considered in this paper can be traced back to the literature on ge-
ometric singular perturbation theory (see e.g. [11] or [12]). The precise smoothing approach considered in
this paper were first considered for autonomous piecewiese-smooth systems in work pioneered by Teixeira
[13], [14]. Emerging applications of these smoothing techniques in the control community can be found in
[15], [16]. The authors have also recently been made aware of a contribution [I7] which appears to have
been made independently of the above literature and in which similar smoothing techniques were also
considered in the context of optimal control. Our analysis builds on the results of [17] by requiring fewer
technical assumptions, proving a concrete rate of convergence in Theorem (I, and formalizing the con-
nection between the minimizers of the regularized and discontinuous problems in Section Finally we
mention a recent contribution [18], which builds on the geometric theory of hybrid systems [19],[20],[21],
in which the smoothing techniques discussed in this paper were extended to a class of hybrid dynamical
systems where the trajectories of the system undergo autonomous "jumps". We hope to extend the
results presented here to this more general setting in a forthcoming article.

1.3 Notation

We now fix notation used throughout the document. Unless otherwise noted, the 2-norm is our choice of
norm for finite dimensional spaces, and the L? norm is our norm of choice for function spaces. We say
that a function f: R™ — RP is Lipschitz continuous if there exists L > 0 such that for each x1,z9 € R"
we have ||f(z1) — f(z2)|| < L||z1 — x2||. Given a smooth function h: R® — R and a controlled vector
field f: R™ x R™ — R", the Lie Derivative of h along f is denoted Lh(z,u): = %h({l}) - f(z,u). Given
a normed space V', P(V) denotes the set of all subsets of V. Given a subset S C V, ¢oS denotes the
convex closure of S in V.

For compactness of notation and exposition, throughout the paper all of the control systems we
consider will have states belonging to R™ and admissible inputs taking values in R™, where n and m are
positive integers. Moreover, we will assume that the admissible set of initial conditions for these control
systems belong to a set D C R", and that the control supplied to these systems takes on values in the
set U C R™. Both D and U are assumed to be compact, connected and convex. Throughout the paper
we will consider square-integrable control signals of length T' > 0, which will be denoted L?([0,T],U).
We will compactly denote the admissible data for these systems by

X =D x L*([0,T],U).
We define the space of tangent vectors on X by
X' =R" x L*([0,T], R™).

Finally, we endow both X and &’ with the norm || - [|: R™ x L%([0,T], R™) — R defined for each ¢ =
(w0, 1) € R x L([0, T], R™) by
€11 = [lzoll2 + [[ul]2.

Given 6 > 0 and ¢ € X, B%(¢) denotes the ball of radius § centered at &.



2 Piecewise Smooth Control Systems

We now introduce the class of bimodal piecewise-smooth control systems considered in this paper, briefly
review Filippov’s convention for defining the dynamics of this class of systems, and introduce the smooth
approximations we study throughout the paper.

2.1 Piecewise-smooth Control Systems

To begin, let g: R™ — R be a regular, smooth map with Lipschitz continuous first and second partial
derivatives. Consider the two disjoint domains

Dy ={x eR": g(x) <0}
and

Dy ={z e R": g(z) > 0},
which are separated by the co-dimension-1 sub-manifold

Y ={z eR": g(x) =0}.

Let f1, fo: R® x R™ — R™ be smooth vector fields with Lipschitz continuous first and second partial
derivatives, and then consider the piecewise-smooth control system

fi (ZE, u) ifx e D

. (1)
fQ(ZE,u) if x € Do,

z = f(z,u) = {
where f: R” x R™ — R"™. Note that f is undefined along ¥, and in general may also be discontinuous
along this surface. Due to the discontinuity in f, classical (or Caratheodory) solutions for the differential
equation may fail to exists along the surface of discontinuity. Thus, we turn to Filippov’s convention
to define the dynamics of the system.

2.2 Filippov Solutions

We now review Filippovs convention, and refer the reader to [4] for a more thorough introduction.
Throughout the document we will make the following regularity assumption, which ensures the existence
and uniqueness of Filippov solutions for the discontinuous system [4, Chapeter 2, Section 2, Theorem
2.

Assumption 1. For each (x,u) € ¥ x R™ either Ly g(x,u) >0 or Ly,g(x,u) <O0.

The assumption rules out pathological cases where Ly g(x,u) < 0 and Ly,g(x,u) > 0 along X, in
which case admissible solutions may either enter Dy or Ds.
Filippov’s convention compactly defines the dynamics of the discontinuous system by

fi(z,u) if z € Dy
&€ F(x,u) = ¢ co{ fi(z,u), f(z,u)} ifzeXx (2)
f2($7u) ifx e DQ,

where F': R™ x R" — P(R") is a multivalued map H For each set of data £ = (xg,u) € X, we say that
the absolutely continuous function z¢: [0, 7] — R™ is the Filippov solution corresponding to this data if
2%(0) = z¢ and it satisfies the differential inclusion () at almost everywhere. For each t € [0, T] we then
definine the map ¢;: X — R" by

¢ (€) = 25(t). (3)

With Assumption [I]in effect, it is customary to distinguish the following two regions of ¥ x U:

'For a more formal derivation of this differential inclusion the reader is referred to [4, Chapter 1, Section 2]



1. The crossing region:
{(:L‘,’LL) €eXxU: (Lf1g(x’u)) : (Lf2g(x,u)) > O}

2. The sliding region:

{(z,u) e X xU: Ly g(x,u) >0and Ly,g(z,u) <0}

When a Filippov solution is in the crossing region, it leaves the surface of discontinuity and enters either
Dy or Do. However, when the solution is in the sliding region the solutions slides along the surface of
discontinuity and obeys the differential equation

T = f*(z,u), (4)
where Filippov’s famous sliding vector field is defined by
fs(x7 u) = (1 - a(xv u))fl(xﬂ u) + a(x7 u)fQ(xv u)

where
’ Vg(z) - (fi(z,u) — fa(z,u))

selects the unique convex combination of f; and fo which keeps the trajectory on X..

2.3 Smooth Approximations

Our family of smooth approximations are parameterized by € > 0 and are obtained by smoothing
along the region of requlatization

Y ={reR": —e<yg(z)<e}.

The main idea behind the smoothing approach is to use the following class of functions to transition
between f1 and fy along X°.

Definition 1. We say that ¢ € C*(R,[0,1]) is a transition function if 1) p(a) = 0 if a < =1, 2)
pla) = 1ifa > 1, 8) ¢ is strictly increasing on (—1,1), and 4) each of the first and second partial
derivatives of ¢ are Lipschitz continuous.

For the rest of the paper, we assume that as single transition function ¢ has been selected. For each
€ > 0 we then define the e-relaxation of to be

&= f*(z,u) (5)
where f¢: R™ x R™ — R” is given by

e = (1o ")) ) + (22 o,

Note that f¢(z,u) is a convex combination of fi(x,u) and fo(z,u) if x € X, and that f*(z,u) = fi(x,u)
if x € D\ X° and fé(z,u) = fa(z,u) if x € Do \ X°.

It is straightforward to see that for each € > 0 the vector field f¢ is smooth and Lipschitz continuous,
and thus the trajectories corresponding to the smooth system will be unique. Thus for each € > 0 and
€ = (z0,u) € X let (59 : [0,T] — R™ be the solution to (F) with initial condition (&) (0) = xq and for
each t € [0,T] define ¢7: X — R™ by

(&) = 29 ().

The following result from [18] establishes that the trajectories of the relaxed system converge to the

Filippov solutions of the discontinuous system as & — 0 when Assumption [I] holds.



Lemma 1. ([I8]) Let Assumption[1] hold for ([1)). Then there exists C > 0 and g9 > 0 such that for each
e<ep, t€[0,T] and & = (xo,u) € X

9:(§) — #7 (&) < Ce.

In other words, the solutions to the regularized systems converge to the solutions of the non-smooth
system at a rate that is linear in €.

3 Optimal Control Problems

In this section we formulate an optimal control problem over the piecewise-smooth system introduced in
Section[2] and a family of approximate problems formulated over the smooth regularizations introduced in
Section 2:3] We then discuss the challenges associated with applying standard gradient-based algorithms
to arrive at minimizers for these problems.

3.1 Optimal Control Problems

To begin, let £: R™ — R be a cost function which is assumed to have Lipschitz continuous first and
second partial derivatives, and define the cost functional L: X — R by

L(&) = (¢ (E))-

We then define the following optimal control problem:

() inf L(¢)

Note that this problem formulation is quite general, since there exists well-known transformations to
include additional terms, such as running costs, into the terminal cost functional we consider here [5]
Chapter 5].

Next, for each € > 0 we define the regularized cost functional Lf: X — R by

LE(§) = 4(97(8)) (6)
and subsequently define the e—relaxation of P by:

(P9)  nf L5(¢)

We next discuss derivative based approaches for solving these optimization problems.

3.2 Directional Derivatives

The majority of practical tools for finding local minimizers of optimal control problems rely on calculating
the derivatives of the cost functional with respect to changes in the initial condition an inputs applied
to the system. Once these derivatives are obtained, standard optimization procedures can be applied to
iteratively improve performance [5].

3.2.1 Directional Derivatives of Regularized Problems

Since for each € > 0 the vector field f¢ is smooth, we can compute directional derivatives of L® using
standard approaches. In particular, given £ = (zg,u) € X, we define DLE(&;-): X' — R by

oo LA -56) — LF(€)
DLF(&:5¢) = lim .

(7)



for each direction 6§ = (dxg,du) € X', which by [5, Theorem 5.6.8| is given by

T
DIF(€:6¢) = p(0)7 - 6zg + /O p(r)T B(r)6u(r)dr

where p: [0,T] — R™ is the solution to the co-state or adjoint equations

—B(t) = AW)Tp(0) ae. 1€ 0,7], p(T)" = Lior(e))

and for each ¢ € [0, T] we have A(t) = %f‘f(g{)t(ﬁ), u(t)) and B(t) = %fg(x,u). In particular DL?(§; 6€)
provides a first-order approximation to how L® changes by perturbing the data supplied to the system in
the direction 0&.

However, inspecting f¢, we see that the partial derivative %f‘a(m,u) will be of the order é when
x € X°. Thus, we should be concerned that the adjoint equations associated to the regularized system
will "blow up" as we take ¢ — 0 along trajectories which pass through the region of regularization. In
other words, in the numerical setting we should be concerned that discretizations of P¢ will become
ill-conditioned for small values of the regularization parameter. However, our subsequent analysis will
demonstrate that this is not the case, and that the gradients of P® remain bounded even as we take
e — 0.

3.2.2 Directional Derivatives of Non-smooth Problem

It is well-known that Filippov solutions for the discontinuous system may have a non-smooth de-
pendence on the initial conditions and inputs supplied to the system [4, Chapter 2, Section 11]. In
particular, the map ¢;(-) may fail to be differentiable at the point £ € X if the trajectory associated to
this data arrives at the surface of discontinuity at time ¢. In the context of optimal control, this means
that the adjoint equations associated to the discontinuous system may under go discrete "jumps" at time
instances when the nominal trajectory reaches the surface of discontinuityﬂ Due to these discontinuities,
the adjoint equations, and consequently the gradients of L, are difficult to approximate numerically us-
ing standard integration techniques such as Euler integration [I7]. As discussed in Section this has
typically meant that derivative-based methods for solving optimal control problems over discontinuous
systems have required restrictive practices such as fixing the number of times the trajectory crosses the
surface of discontinuity @ priori. This is our primary motivation for employing the smooth approximations
considered in the paper.

Before proving our convergence results in Section [ we first formalize conditions which will ensure
the differentiability of L at a nominal choice of £ = (zo,u) € X. Each of these additional assumptions
are standard when discussing the differentiability of Filippov solutions [4, Chapter 2, Section 1l|. For
compactness of notation, given £ = (zg,u) € X, we define T¢ to be the set of time instances at which
the Filippov solution corresponding to this data arrives at the surface of discontinuity:

T ={t€(0,T): ¢;(¢) € T and ¢;_(€) ¢ T}

First, we assume that the nominal trajectory does not begin on the surface of discontinuity or arrive at
it at exactly time T". The first condition can lead to non-differentiability with respect to initial conditions,
while the later condition can cause ¢7(-) to be non-differentiable, and consequently also the terminal cost
functional L [4, Chapter 2, Section 11].

Assumption 2. The data & = (xo,u) € X is such that xo € ¥ and T & T.

2The "jump conditions" associated with the adjoint equations of the discontinuous system have a rich geometric inter-
pretation which we do not have space to discuss in this article. However, the interested reader is referred to [4, Chapter 2,
Section 11]) for a comprehensive discussion regarding these "jump conditions" in the context of sensitivity analysis.



Our next assumption ensures that the nominal trajectory arrives at the surface of discontinuity trans-
versely, without "skimming" the surface, a situation which is well known to cause non-differentiability.

Assumption 3. The data ¢ = (zg,u) € X is such that if £ € T¢ then Iy > 0 and interval I =
(t—~,t+~)N1[0,T] such that

1. ¢;-(&) € D1 = Ly g(de(§),u(t) >0, vVt el
2. ¢;-(§) € Doy = Ly,g(¢e(§),u(t)) <0, Vtel

The final assumption we make rules our pathological cases such as "Zeno" behavior, where the tra-
jectories of the system cross the surface of discontinuity an infinite number of times.

Assumption 4. The data & = (vo,u) € X is such that T¢ is a finite set.

When the data & € X satisfies Assumptions , the map ¢7(-) will be differentiable at &, and
thus the directional derivatives of L will be well-defined at this point. When this is the case we define
DL(&+): X' = R by

DL(g; i) = i TEFA I =) (8)

for each each direction 0§ € X.

4 Convergence Results

We are now ready to present the theoretical contribution of this work. In section [{.I] we demonstrate
conditions under which the directional derivatives of the regularized problem converge to directional
derivatives on the discontinuous problem, and in Section [£.2] we use this result to discuss how the regu-
larized problems can be used to consistently approximate the non-smooth problem.

4.1 Convergence of Directional Derivatives

We first demonstrate that when Assumptions 2H4] are satisfied, and directional derivatives on the non-
smooth cost functional are well-defined, that that the regularized problems can be used to approximate
these derivatives with arbitrary precision. We first develop a few intermediate lemmas which are used
in the proof of the main result. Proofs for the lemmas can be found in the appendix. The first lemma
demonstrates that variations on the relaxed problems remain bounded, even as ¢ — 0.

Lemma 2. Let Assumption hold. Further, assume that the data & = (x9,u) € X satisfies Assumptions
hold. Then there exists C' > 0 and 9 > 0 such that for each € < gy and §§ = (dxp,0u) € X

IDLE(&;06) — DL(&; 68)|| < CJjo¢]- (9)

Next, we establish our final two preliminary results needed for the statement of our firs convergence
Theorem. The next result demonstrates conditions under which directional derivatives on the regularized
problems converge to a well defined limit as € — 0, and will provide the rate of convergence in Theorem
We remind the reader the the proof of the following two results are contained in the appendix.

Lemma 3. Let Assumption[] hold. Let the data & € X satisfy assumptions[33 Then there exists C > 0
and €y > 0 such that for each 1,69 < gg and 6§ € X we have

IDL(&;68) — DL (& 66)|| < Cler — ea. (73)



The final preliminary result demonstrates that if Assumptions hold at the point £ € X, then they
also hold in a neighborhood of .

Lemma 4. Let Assumption [1] hold. Let Assumptions[3{]] hold for the data & € X. Then there exists
0 > 0 such that assumptions EIE also hold for each &' € BY(¢).

With these preliminary results established, we are ready to state our first convergence result.

Theorem 1. Let Assumptz’on hold. Let & = (xzo,u) € X satisfy Assumptions . Then there exists
C > 0 and g9 > 0 such that for each 6§ = (dxg,0u) € X’ and € < g9

IDL(&; 6€) — DL (&;68)|| < Ce.

Proof. Let {e;};cy be a sequence such that ; — 0 as ¢ — co. By Lemma (1] and the continuity of ¢, we
see that the sequence of cost functionals {L*},  converges point-wise to L. Using a standard uniform
convergence argument (see e.g. [22, Theorem 8.6.3]), we know that if we can show that there exists 6 > 0
such that for each ¢ € B°(£) the sequence of linear maps {DL% (¢';+)},cy is bounded and converges
uniformly, then its limit point must be DL(&’;-). In other words, this would demonstrate that directional
derivatives of {L*7},_ converge to the directional derivatives of L in a §-neighborhood of £. Let 6§ € A’
be arbitrary. By Lemmas 2, 3 and 4, we know that there exists constants C1,C2 > 0, g9 > 0, and § > 0
such that for each e < g and & € B%(¢)

DL*(¢';6€) < Cr|o¢| (10)

and &1,&9 < g9 we have . )
| DL (€'56€) — DL (E';66)|| < Caler — &, (11)

which demonstrates that the sequence of linear maps {DL®({;-)},o converges to a bounded limit as
i — 00, as desired. The linear rate of convergence follows from . O

At this point it is prudent to compare Theorem [1| to the convergence results presented in [I7]. First
we note that our regularity Assumption [I] is weaker than the one-sided Lipschitz assumption made in
[17, Section 3.1]. Next, we note that we provide a concrete rate of convergence in Theorem 1, Note that
Theorem [1|also demonstrates that the equations of sensitivity [4, Chapter 2, Section ll] for the regularized
system converge, at a rate that is linear in €, to the equations of sensitivity of the non-smooth system.
Many applications, such as assessing the stability of periodic orbits [2], rely on accurately assessing the
equations of sensitivity with known margins of error. We anticipate that the bound in Theorem [1| will
also find use in such settings.

4.2 Consistent Approximations

In practice, solutions to difficult optimization problems are often approximated by solving a sequence
of approximate problems. The most common example are penalty methods, wherein a sequence of
increasingly penalized unconstrained optimization problems are used to find minimzers for a difficult
constrained optimization problem. More generally, analyzing sequential algorithms of this sort falls into
the framework of consistent approzimations as stated by Polak [5, Chapter 3.3]. In this section, we
discuss how this theory can be applied to find minimizers of P using so-called "Master Algorithms" and
a sequence of regularized problems {P%}, .

Even though, as we saw in the proof of Theorem [I} L® converges to L as ¢ — 0, this is in general
not sufficient to show that a sequence of minimizers to the sequence { Py}, accumulate to a minimizer
of P[5, Chapter 3.3]. In particular, the consistency results we pursue will rely on comparing optimality
functions for the non-smooth and regularized problems, which provide additional derivative information
about the problems.



Definition 2. Let G be an optimization problem on the normed space S. We say that 6: (—o0,0] is an
optimality function for G iff it is continuous and 0(z) = 0 for each minimizer T € S.

Given a difficult optimization problem and optimality function pair (G, €), the theory of consistent ap-
proximations relies on finding a sequence of approximate optimization problems and optimality functions
{(Gn,0n)},,cy and being able to show that the epigraphs of the pair (Gy,6,) converge to the epigraphs
of (G,0) as N — oo. Then one can deploy the aforementioned Master Algorithms [5, Chapter 3.3.3 |
to solve of G by iteratively optimizing a subsequence of {Gy}, . Due to space constraints, we leave a
more detailed introduction to [23] or [5], and instead discuss here how to obtain such consistency results
for the problems we consider.

Due to the non-differentiability of L, we modify the approach typically used to demonstrate such
consistency results for approximations to smooth optimal control problems [5, Chapter 4]. In particular,
we will restrict our attention to regions where Assumptions [2}4] are satisfied and the regularized problems
provide accurate derivative information about the non-smooth problem in the limit. We propose the
following optimality functions for the smooth and non-smooth problems, which are restricted to subsets
of X on which Assumptions are satisfied.

Proposition 1. Let S C X be a connected, convex set such that Assumptions are satisfied for each
& € S. Consider the restricted optimization problems:

(Ps) infL(©) (12)
(P§) infL%(¢) (13)

Then the following two functions are optimality functions for Ps and Pg, respectively:
0s5(&) = inf{DL(&6): 6 € X' and { + 6§ € X'} (14)
05(¢) = inf{DL*(&;6¢): 6§ € X and £+ 6 € X'} (15)

Proof. We omit a detailed proof of the fact that the proposed optimality functions appropriately capture
the minimizers of the respective optimization problems, as the argument closely follows the arguments
made [5, Theorem 5.6.9] and [24, Proposition 4.5|. The continuity of the relaxed optimality function
follows by noting that time map £ — DL?(&, ) is continuous for each € > 0 [5, Theorem 5.6.9], and
recalling Danskin’s Theorem. The continuity of the proposed optimality function for the non-smooth
problem follows from the uniform convergence displayed in Theorem O

We can now state the following consistency result:

Theorem 2. Let {¢;},.y be a sequence such that ; — 0 as i — oo, and let S be as in Proposition .
Then the pair (LG ,03 ) epi-converges to (Ps,0s) as i — 0.

Proof. The pointwise convergence of {L? }z cny to Lg noted in the proof of Theorem |1} also demonstrates

epi-convergence of the sequence. The epi-convergence of {9? }l ey to s follows directly from the statement
of Theorem Il O

This result demonstrates that the appropriate consistency results from [5, Chapters 3-4] hold, so
long as we restrict our attention to subsets where Assumptions hold. In practice however, we do
not want to restrict ourselves ahead of time to a single compact subset S on which Assumptions [2}{]
are satisfied. In particular, we actually want to optimize over all of X and iteratively optimize over a
sequence {L% },_, in which case we should expect that successive iterates will sometimes produce initial
conditions which cross the surface of discontinuity between iterations, or generate trajectories whose
final state crosses the surface between iterations. Nonetheless, so long as an algorithm which successively
optimizes over {L§}, y accumulates to a point which satisfies Assumptions , we can invoke Theorem
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2 in a neighborhood of this point to study the limiting behavior of the algorithm. Though we plan to
provide a more exhaustive exploration of this topic and introduce implementable numerical algorithms
for solving P in a forthcoming article, we believe the results we have indicated here provide a valuable
basis for this important future step.

5 Trajectory Optimization via Smoothing on a Reduced-order Model

To demonstrate the utility of the smoothing technique we have investigated, we first use the approach
to generate hopping trajectories for an actuated Spring-mass hopper, which was first proposed in [9]
for realizing the hopping on the bipedal robot Cassie. Its nonlinear leg spring model has also shown
great value for other robotic applications such as underactuated bipedal walking [I] and fully-actuated
humanoid walking [1I0]. We note, however, that the trajectory generation procedures proposed in these
prior works required fixing the sequence of contacts the robot makes with the ground a priori. Here, we
demonstrate that the regularization techniques we consider can be used to effectively generate optimal
trajectories on the Spring-mass model without pre-specifying the contact sequence ahead of time.

5.1 Actuated Spring-mass Model of Hopping

The actuated Spring-mass hopper is depicted in Fig. [1| (a). The model has four states: the height of
the mass, z, and its time derivative 2, as well as the natural length of the leg spring, L, and its time
derivative, L. The model is actuated by controlling L, i.e.,

L=u, (16)

where u is assumed to be the actuation on the leg. The Flight phase is ballistic, thus the dynamics of
the mass is,

i=—g (17)
where g is the gravitational constant. When the hopper is on the ground, the dynamics of the mass is,

é:F(z,z,L,L)_g (18)
m
where m is the value of the mass and F(z, %, L, L) = K(L)(L — z) + D(L)(L — z) is the leg force from
the spring deflection. Here, K (L) and D(L) are the stiffness and damping coefficient, respectively. For
further details of the model can be found in [9]. The hopper lifts off the ground with F — 0. In
practice, the K (L) is much larger than D(L). Thus we simplify the assumption that the robot lifts off
when L = z. Collecting the states of the robot as x = (z, 2, L, L), we represent the dynamics using the
piecewise-smooth vector field f: R* x R — R* where,

b e flea) — fr(z,u) ifg(z) >0
f(@,u) {fg(:c,u) if g(z) <0, (19)
where,
fr(z,u) = (2, —g, L,u)" (20)
fa(z,u) = (¢, F(x,2,L,L)/m — g, L,u)" (21)
g(z) =z—L. (22)

10



(b)

Figure 1: (a) The actuated Spring-mass model. (b) The optimized hopping trajectories. (c¢) Visualization
of the hopping.

5.2 Trajectory Optimization Via Smoothing

Now we apply the proposed smoothing method for optimizing a hopping motion without specifying the
contact modes. The hopping task we choose is to reach an apex height zapex = 1m at tapex = 1s from a
static standing configuration, and then settle back to its original height at ¢y = 1.8s. The initial condition
is set as zo = (2(0), 2(0), L(0), L(0))T = (.65,0,.75,0)”. The input is bounded, i.e., u € U = [-10,10].
The cost function is,

J () =(2(tapex) — Zapex)” + £(tapex)*+

(2(tf) — 2(0))? + 2(t)* + /u2dt.

To approximate a solution to the problem numerically, we use the regularization parameter € = .01,
and Euler integration with 200 uniformly spaces gridpoints. The resulting finite dimensional optimization
problem is solved using the Matlab fmincon function. The optimized Spring-mass trajectory is shown in
Fig. |1} (b). Due to the actuation limitations of the model, the optimized hopping actually requires two
hops to reach to the apex height and one additional hop to settle.

6 Hopping Embedding on the Exoskeleton

Despite the simplicity of the Spring-mass hopper, the optimized dynamics can be embedded onto complex
robotic systems. This further amplifies the application of proposed smoothing technique. Here we briefly
describe the process of embedding the hopping dynamics of the Spring-mass onto the exoskeleton (Fig.
(a)). More examples of the dynamics embedding from simple models to full robot models can be found
in [9] [I] [I0] and the references therein.

6.1 Robot Model and Hybrid Dynamical Model

The exoskeleton (Exo) has two legs with 12 motor joints in total. Its equation of motion can be described
by the floating-base Euler-Lagrange equation,

Mgi+h=Bu+ JI'F,, (23)
Joi + Jpg = 0, (24)

where ¢ € SE(3) x R"7!2. The exact meaning of each term can be found in [9]. For the hopping
behavior, we assume the two feet always have same contact, i.e. either both feet are or are not in contact
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with the ground. Thus the hopping is an alternation between two domains, i.e. Ground and Flight
domain. We use subscript v to denote different domains. The guards are defined from the transition
conditions, i.e. ground normal forces—0 and foot position—0. We model the impact as plastic impact
from Flight— Ground, where the joint velocities have jumps, i.e., qgmund = A(q)q;light.

6.2 Output Selection and CLF-QP based Force Control.

For Ground, the robot is fully actuated and 6 outputs are required to be defined. We first select the
center of mass (COM) position and the yaw and roll angles of the pelvis/torso of the robot as relative
degree 2 outputs, i.e.,

pcom (q) 0

Ground bcowmy (Q) 0
1) = — , 25
WD = Voo (a)| 270 (29)

SDpelvis(Q) 0

where 2°P'(t) is the mass trajectory of the Spring-mass model for the embedding. It is also necessary to
have zero centrodial angular momentum before Flight phase [9]. We select the last output as,

yerowd (g ) = Hosin(q, 4) — 0, (26)

where Hiyjiten(q, ¢) is the pitch centrodial momentum.

In Flight, the robot is underactuated. Here, 12 outputs are required to be defined since n, = 12. We
selected the outputs as the positions of the feet to the COM and foot orientations. The desired vertical
positions between the COM and the feet are the real leg length L — z of the Spring-mass hopper.

pg‘eetﬁCOMEq% 0

. P q C

yFlight o 4y = [PReet—coM _ , 27

2 ( ) p;‘eetﬁCOM(Q) LOPt(t) N zOpt (t) ( )
SDFeet(Q) 0

where c is a constant vector and its value depends on the initial state of the flight phase.

We apply the control Lyapunov function based Quadratic programs (CLF-QP) [25] [1] for feedback-
zeroing the outputs. The exponential convergence on the output dynamics is enforced by the inequality
condition on the constructed Lyapunov function, i.e.,

V(u,q,4) < =7V (g, 9), (28)
with v > 0. This inequality is affine with respect to u,
AT (g, ¢)u < b (g, ). (29)
For external contacts as holonomic constraints, the holonomic forces F,, are affine with respect to u,
F, = Ayu+ by, (30)

where A, b, can be found in [I0]. Thus contact constraints such as friction cones, non-negative normal
forces can be formulated as an inequality constraints on u,

CyAyu < —vav, (31)

where C,, is a constant matrix. Since it is desirable to embed the normal force of the Spring-mass hopping
on the full robot, an equality constraint can be expressed for the force control,

SpAyu = F°P" — S, by, (32)
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Spring-mass
Exoskeleton

Figure 2: (a) The Exoskeleton. (b) The optimized ground force of the hopping. (c¢) Comparison of the
COM trajectories between the Spring-mass and the Exo. (d) The snapshots of the realized hopping.

where S, is a selection matrix to extract the vertical normal forces from the holonomic force vector and
FOPt is the leg force from the Spring-mass optimization (Fig. [2| (b)). It is necessary to relax the force
control since the vertical COM position is one of the outputs for control [I0]. Thus the equality in Eq.

becomes,
(1 —¢)F°P" — Syb, < SyAyu < (14 ¢)F°P' — S, by, (33)

Cib Cub

where ¢ € (0,1) is a coefficient of the relaxation.
The main control law for the full-order model in each domain is thus formulated as a quadratic
program as follows:

u* = argmin u’ Hu + 2Fu + pé?, (34)
u€R12 §cR
st AV (g Qu < by (q,9) +6, (CLF)
CrA,u < —Chby, (Contact)
up < U < Uyp, (Torque Limit)
e < SpApu < cyp, (Force Control)

where § is a relaxation term for increasing the instantaneous feasibility of the QP, and p is a positive
penalty constant.

6.3 Simulation Result

We primarily implemented the embedding in simulation to demonstrate the value of the smoothing
technique. Details of the implementation can be found in [I0], where same embedding was implemented
for realizing walking on the Exo. Fig. [2| (c)(d) show the resulting hopping motion. The COM trajectory
matches well in general. The exerted hopping corresponds to the Spring-mass hopper. A video of the
simulation can also be found in [26].

7 Conclusion

This paper investigated a method for smoothing out a discontinuous differential equations. We studied
optimal control problems over the discontinuous system and its regularizations, derived a number of
useful properties for these problems, examined conditions under which the regularizations can be used
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to obtain accurate derivative information about the non-smooth problem, and outlined how to invoked
the theory of consistent approximations to study how minimizers of the regularization accumulate to
minimizers of the non-smooth problem. Finally, we demonstrated the efficacy of the smoothing approach
by using it in conjunction with recent reduced-order modelling techniques to generate non-trivial motion
plans on a 18-DOF exoskeleton robot in simulation.
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A Technical Lemmas

This section contains a number of technical lemmas and proofs of lemmas that were stated earlier in the
document.

Lemma 5. Let Assumption [1] hold. Then there exists C > 0 and g9 > 0 such that for each £ € X and
t €[0,T) we have
loe(§)Il < C (35)

and for each ¢ < g9 we have

l6E () < C (36)

Proof. The proof follows closely the steps of [5, Proposition 5.6.5]. First, note that by the Lipshchitz
continuity of fi and fy and the boundedness of U there exists a constant K > 0 such that for each x € R”
and u € U we have

max{f1(z,u), fo(z,u)} < K(1L+ |z]). (37)

Furthermore we also see that:

Il = (1= (22 )t + o (220) o) | < max{lfato )l W) < K1)

(38)
For each e > 0 and £ = (xp,u) € X we also have
t
167 () < [lzoll +/0 1/5(:(§), u(®))[| < K (1 + ¢7(8))- (39)
Using a standard Gronwall in equality |5, Lemma 5.6.4], we conclude that
lpe(E)1] < ™ (1 + [|ol])- (40)
Recalling that D is bounded and invoking Lemma [I] demonstrates the desired results. O

A.1 Proof of Lemma [2

The following proof is rather involved, so we begin by making a number of simplifying assumptions
for which we incur no loss of generality. To begin, we will assume that the nominal trajectory of the
discontinuous system reaches the surface of discontinuity exactly once; the generalization to the case
where it reaches the surface a finite number of times is straightforward. That is, we assume there is a
single time t; € T¢. Without loss, we assume that 2o € D;. To ease our analysis, we will assume that
the function g is such that for each z = (1, ...,2,)7 € R® we have g(x) = x1. Note that by the Implicit
Function Theorem there exists a set of coordinates about each point which makes this assumption true.
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Furthermore, for claritrty of exposition, rather than prove the result using the adjoint equations,
we will demonstrate it using the equations of semsitivity. In particular, by the chain rule, we may also
calculate DL?(&;6€) as

d
DLF(&6€) = - L(67(€)) - D7 (&; 06), (41)
where for each ¢ € [0,T] we define

95 (£ + AE) — $5(£)

D (€;56) = gy ETA (2
where for each ¢ € [0, 7] by [5, Theorem 5.6.8] we have
t
DG(6:66) = (000520 -+ | B(6,7) 56O ur)dur)  da(0) = 3o (13)
and, for each 7 € [0, 7], ®(¢,7) is the solution to
d d
aq)(tﬂ_) = @fg(gbi(f)vu(t))q)(ta'r% (I)(TaT) =1, (44)

where in the above equation I denotes the identity matrix. Note that since %qbt(g)

It is straightforward to check that, while 8% fé(x,u) is of order % in the region of regularization,
% fé(x,u) is bounded on bounded sets. Thus, if we can show that the state transition matrix in (43) is
bounded for each ¢, 7 € [0,T7], the desired result will follow immediately.

In order to demonstrate this fact, it is sufficient to demonstrate that the solution dz°: [0,7] — R" to

S00°(0) = 5= PO, ul)a(), 52°(0) = 7 (15)

dt

remains bounded for each choice of initial condition Zy € R™. Since we have assumed that the gradients of
f1 and fy are Lipschitz continuous, the solution to will remain bounded when the nominal regularized
trajectory is away from the surface of discontinutiy; thus, we need only to show that the equations of
sensitivity remain bounded when the nominal trajectory passes through the region of regularization.

Throughout the proof, we will study the behavior of the sensitivity equations in three cases. We
will first consider the case where he nominal trajectory of the discontinuous system crosses the surface
of discontinuity transversally. In the second case, we will examine when the nominal trajectory of the
discontinuous system begins to slide along the surface of discontinuity at time ¢;. In the final case we
consider, we will examine situations where the nominal trajectory of the discontinuous system either
remains on the surface of discontinuity in an open interval containing ¢; without sliding, or instead
instantaneously crosses the surface of discontinuity but does not do so transversally.

However, before addressing these various cases we first introduce notation and provide a preliminary
analysis which will aid our discussion. We begin by defining for each € > 0 and ¢ € [0, 7]

) = o L)) (46)

9
450 = 2 (67(0),ulr) (19)
A500) = 2 o(5(€),u(r) (19)
Fo(1) = (265 (€), u(t) — Fi(67(0), (1)) (50)
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We also define the following constant which will be used repeatedly in our analysis:

0
C1 = max —p(a 51
! ae(—1,1) 8a(p( ) (51)
where we note that ' exists and is finite due to our assumptions on the partial derivatives of ¢. By our
assumption that the nominal trajectory of the discontinuous system arrives at the surface of discontinuity
transversally and Lemma [l for each e sufficiently small we may define

¢ = inf{t € [0,T]: ¢5(&) € 37} (52)

to be the time instant at which the corresponding regularized trajectory first arrives at the region of
regularization.
With the above notation we can compactly write the partial derivative

%fg(ﬁbt(f)a u(t)) = (1= (8)) A7 () + (1) A3(t) + %wa(t)fe(t)VQ(qbf(&)) (53)

Applying Lemma [5] and our assumption that the gradients of f; and fo are Lipzschitz, it is straight-
forward to bound for each t € [0, T]

8 191 13

o (¢e(§),u(t)) < M + Muws(t) (54)
for some M > 0, by noting that ¢°(t) € [0,1]. Applying a standard Gronwall inequality [5] 5.6.4] we see
that

Jos(0)) < exp( [ 3+ 212 () ) ol < Caemp ([ Lati (rrar ) (59

for some Cs > 0 sufficiently large.

This trivial bound allows us to simply bound the sensitivity of the regularized system in the case where
the nominal trajectory of the discontinuous system crosses the surface of discontinuity transversally.
Indeed, consider the case where there exists 6 > 0 such that for almost every ¢ € (t1 — d,t1 + ) we
have Ly, g(¢¢(€),u(t)) > 0 and Lp,g(¢:(£),u(t)) > 0. Note that for e sufficiently small we will also have
L (¢7(§),u(t)) > 0 and Ly, (¢5(§),u(t)) > 0 for each t € (t; — J,t1 + 6). Since the nominal trajectory
of the discontinuous system passes transversally across the surface of discontinuity, it is straightforward
to see that for each € small enough the corresponding relaxed trajectory will spend at most on the order
of € units of time in the region of regularization. In other words, 3K > 0 such that ¢7(§) ¢ X° for each
t & (t1 — Ke,t1 + ke). Combining this fact with (55)), the fact that w®(t) = 0 if ¢§(¢) ¢ X° and the fact
that w®(t) is bounded, it is straightforward to verify that in this case d2°(¢) remains bounded for each
t € [0, 7). Indeed we see that

t 1 t1+Ke 1
|ox(t)|| < Caexp (/ ngE(T)d7-> < Oy exp(/ M801d7'> <C (56)
0 t

1—Ke

for some C > 0 sufficiently large, as desired.

In the second two cases that we consider, we will not be able to upperbound the time spent in
the region of regularization on the order of % Before proceeding to these more delicate conditions, we
introduce some additional terminology which will clarify the intuition behind our approach to obtaining
a bound in this case.

First, we will further decompose

- 23]
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where 6x5: [0,T] — R is the first entry of dz¢, and dx§: [0,7] — R"~! represents the remaining n-1
entries. Given this notation, and our simplifying assumption on g which implies Vg(z) = [1,0,...,0], we

may rewrite as

0750 = (A0 + 20 )0 + AR50 (58)
and d .
59750 = (40 + 20750 )i (0) + A5 (59)

where f: [0,7] — R denotes the first entry of f€ and f5 1 [0,T] — R"~! denotes the n — 1 remaining
entries, and A5;: [0,7] — R, A5,: [0,7] = R x RV Ay;: [0,7] - R®D x R and A5,: [0,T] —
R x R=1 are such that

g 3 (4 £ Ail A§2
(1= @O)AT (1) + (0 A5(1) = | 170 220 |- (60)

Solving these linear time-varying systems, we have that
t 1 _
aui) = exp( [ A5i(7) + L) i (e )
0

v t - A+ LA ) ALy (rasE(r)ar (o)

and

suite) = o [ Lagmar )i+ [ e [ Asos) (A5 + 2o )ssinar - (62)

where 7} € R is the first entry of Zy, and 73 € R(™=1) represents the remaining (n — 1) entries. Here

we immediately see the challenge of bounding the equations of sensitivity in this case. In particular, we
observe that the solutions and will "blow up" unless dz] goes to zero rapidly upon entering the
region of regularization. More accurately, we will need to show that dzj decays exponentially to zero at
a rate that is on the order of % to ensure that this does not occur.

We are now ready to consider the next case in our analysis. In this case, we assume that 36 > 0 such
that for almost every t € (t1 — d,t2 + ¢) we have L g(¢(§),u(t)) > 0 and Ly,g(¢¢(€), u(t)) < 0. In this
case the nominal trajectory of the discontinuous system begins to slide along the surface of discontinuity
at time t;. Crucially, we note that in this case for each t € (t; — d,t1 + ¢) we will have

A~

fitty <—f (63)

for some f > 0 and each e sufficiently small, since f; and fs are both "pointing into" the surface of
regularization in this case. By our assumption that Ly g(¢¢(£),u(t)) > 0 and Lg,g(¢¢(£),u(t)) < 0, and
our assumption that ¢ is strictly increasing on (—1,1), we see that when ¢ is sufficiently small that the
regularized trajectory will flow to the relative interior of 3¢ after arriving at the region of regularization at
time ¢, and remain in the relative interior of 3¢ until at least time t; + §. Moreover, since %@(@) >0
for each x € R™ which lies in the relative interior of X¢, we see that there exists k1 > 0 such that
we(t) > ky for each t € (¢°,¢1 + ) where we define

* =1t +e. (64)

Thus, the differential equation will be damped on the order of % when the regularized trajectory
is in the region of regularization. However, the differential equation will will simultaneously "blow
up" exponentially at a rate that is on the order of é Due to the interconnection of these two differential
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equations, it is not imediatly clear which of these effects will prevail. Nonetheless, we will still show that
for e sufficiently small 6z still decays to zero exponentially at a rate that is on the order of % Once
0x5(t) decays to the point that it is (O(e)), the right hand sides of and will O(1) for the rest of
the time that the regularized trajectory remains in the region of regularization, and we will have obtained
the bound that we desire.

Before proceding to our main analytic step, we first develop a number of useful intermediate bounds.
By lemmawe see that flfj(t) is bounded for each ¢ € [0, 7] and i, j € {1,2}, and f5(¢) is also bounded
for each ¢t € [0,T], and and thus using familiar properties of the exponential function we bound for each
te[0,T]

Iss5(0)1 < exp [ A5strrar ) exo( [ L) fitrrar )

+ [l [ a50is ) e [ s fitsras ) lowstofar

< cvep( [ Lerntrir ) faal + s [ e [ Lrormsias Jlamsrlar 63

3

and

Iss500)1 < exp [ Aga(rrar )izl + [ o [ Aptssis) L oo

t
1
§03||$0H+03/ cwo(r)lloxi(r)lldr  (66)
0

where we chose C3 to be sufficiently large and we note that Ha?"(l) , }:E%H < ||Zo|| by the Triangle Inequality.
Using these new bounds, for each t € (¢°,¢1 + §) we are employ (65)) and and our definitions of
k1 and f we further decompose and bound

e .
1627 (2)]| < C3exp (/te iWE(T)le(T)dT> exp </{s ik‘lfdr> | Zo|
+Cs /: exp (/: iwg(s)ﬁ(s)ds) 625 () || dT + C3 /{: exp (/Tt —i/ﬁfds) 18250 dr
= .
< Csexp (/ts in(T)fl(T)dT> exp </t€ —ikﬁdr) | Zol|
+C3 /:6 exp (/Tt in(S)fl(S)ds> Cs exp (/Ot iMwE(s)ds> | Zol|dT+C5 /{: exp </Tt iklfds> 1625 (7) | dr

t 1. t t 1 .
< Cyexp </ _z—:fk1d7—> | Zoll + 04/ exp </ —efkld,s) |0x5(T)||dr  (67)
fe fe T

for some Cy > 0 sufficiently large, where we have use .
We can follow a similar set of steps and employ to obtain:

b1
o)) < Coesp( [ arur(ryar ) ol
0
e t 1
MCUE(T)dT) |0l
ie €

< Cyexp ( é]\&u5 (T)dT> exp (

te

tq
gcsexp< / gMCer) 1%l (68)
tE
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for some Cy > 0 sufficiently large.

Here, we pause to inspect the last inequality in . In order to show that dx§ decays exponentially
on the order of %, we will need to bound |[dx5|| on an interval of appropriate length. In particular, observe
that if we can show that ||dz°(t)|| < C for some C' > 0 for each t € (%, + ﬁ x eln(L)), then 65(t)

will reach a value of O(e) by then end of this interval. Once this occurs, both dz§ and x5 will vary at
a rate that is on the order of O(1) for the rest of the time that the regularized trajectory remains in the
region of regularization, and we will have obtained the bound we desire. Though we will prove this more
carefully later, we provide this commentary to provide an intuition for our following steps, which my be
otherwise difficult to follow.

In order to bound ¢z5 uniformly on the desired interval, we will use the following procedure to
repeatedly tighten bounds that we have already obtained for dz§ and dx5 in an inductive manner. In
particular, we will begin by plugging in into (67) and then taking several additional steps. The
result will be a tighter version of . We will then plug this tight bound into and and again repeat
the intermediate steps until we have a uniform bound for ||dz5(¢)|| on our desired interval.

To begin, we plug into , and integrate to obtain:

1, _ t 1. . 1 _
|0x5(t)|| < Cyexp (gfkl(t - t€)> [|Zo|| + C4Cs [ exp< kyf(t — ’7’)) 6Xp<€CQM(T — t€)> ||xol|dT
ts

9
9

P 1 D) s
— Ciexp(~Lfka(t =) ) laol] + CaCi -~ — f(exp(gcg*Mu—t)) D)ol (69

Next we plug this expression into and again use w®(t) < Cy to obtain

t

1625 < Csl|Zoll + HonHCa/

i€

1C'4 [GXP<—1fk1 (t— F))
£ £

€ 1 =)
+C5M*02+k1*f<exp<€Cg*M(t—t)) 1)>]d7' (70)

and then pulling out constants we then obtain

a5 < CaHa:oH[l + /t:i[exp<—ifk1(t—t_s)) + €exp(ng*M(t—t_5))]dT] (71)

for some Cg > 0 sufficiently large, and then we integrate to obtain

1625(8)| §06||j0||[1+f*1k1 [exp<—ifk1(t—tf)>—1]+02iM[exp(icg*M(t—tf)>—1H. (72)

Again pulling out constants, and noting that for each appropriate choice of ¢t and 7 we have

exp(—ifmt—fs)) <1 (73)

we then obtain .
1625(1) | < Crllzo] (1 + 56XP<502 Mt - tff))). (74)

for some C7 > 0 sufficiently large. On the desired interval ¢t € (¢°,¢° + ﬁ * aln(%)) we have that

2%k

Cox M 1 —CoxM —CaxM
625(t)|| < C7H5:0||<1 —|—€exp< l: i 7 1n(6)>> = C7|3_:0||<1 +exe koxf > = C7Hf0||<1 Y )
9 *
(75)
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t CQ*M
koxf

> 1 the above bound will tend to infinity as we take € — 0 and will not serve our needs.

In the case tha
CQ*M

< 1 we will have that dz5 is bounded on the desired interval. However, in the

case that

o %k
However, we can now plug (74]) into our above analysis to tighten the bound. In particular, rather than

plug into in equatlon , we can now put in the improved bound , and follow the steps
take from to to improve the bound. Though we omit the details in the interest of brevity, it

can be shown that this proccess yields the following bound:

52500 < Callzl (14 exp( Lo - ) ) ). (70

for some Cg > 0 which is chosen to be sufficiently large. If we instead repeat the above process p times,

where p > 0211}4 then we obtain abound of the form
o)) < Gl (1-+ < exp( o brte — ) ) ()
for some C), > 0 sufficiently large, and in this case we may bound 0z5(t) for each t € (¢°, ¢+ kgl*f xeIn(L))
by
5250011 < llaol (14 2 exp( ) ) ) = Collal (1427 + 7 5 ) = Gyllanl (14757
ko

and in this case we will have that for each ¢t € (%, + : *f xeln(1))

2

1625l < Collzol, (79)

where Cy > 0 is chosen to be sufficiently large. Combining this bound with , on the interval ¢ €
(5,5 + f xeIn(1)) we have
2

t t toq.
o) < Cresp( [ =L mnar oo + s [ exo( [ = Limas) Calmolar
te T

t 1 .
< C11 exp (/ 5fk31d7’> ||3_30|| + 6011”@0” (80)
t

€

—L_ xeln(l) we have

for some C11 > 0 sufficiently large and setting £© = #* + oy
2

|012° (%)

(81)

Thus, we see that ||dz¢|| decays exponentially to zero at a rate of decay that is on the order of =, as desired.
Moreover, combing with (80) and integrating through we obtain for each ¢ € (%, t* + - f xeln(1))

t1 b1
[6z5(t)|| < Cs||zo| +C3/ ECQ (CH eXP(/ —gfk1d8>||ﬂf0\ +€Cu>dT < Cr2||Zo| (82)
0 te

for some Ch2 > 0 sufficiently large. From here it is straightforward to verify that the equations of sensitiv-
ity remain bounded for the rest of the time that the nominal trajectory is in the region of regularization.
We omit a detailed argument in the interest of brevity, since it closely follows the argument made in [17].

Finally, we discuss the case where the nominal trajectory of the discontinuous system either stays on
the surface of discontinuity with out sliding, and the case where the nominal trajectory of the discontin-
uous system instantaneously crosses the surface of discontinuity, but does not do so transversally. This
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covers the remaining situations we must consider under Assumptions 2Hd] We provide only a sketch of
the proofs in these case, since the arguments follow largely from our previous analysis.

First, suppose that the nominal trajectory of the discontinuous system stays on the surface of disconti-
nuity on the interval (1, t2) where t3 > 0 but does not slide. For almost every time t¢ (¢, t2), we will have
cither L7, g(¢1(€), u(t) > 0 and Ly, g(¢4(€), u(t)) < 0 or Ly,g(:(€),u(t)) > 0 and Ly,g(éx(E), u(t)) < 0,
otherwise the trajectory would leave the surface of discontinuity before time ¢5. Since either f; or fs is
always "pointing into" the surface of discontinuity, for each & small enough, we will again have f{(t) < 0
for almost every time t € (t1,%2), and we will again have exponential dampening of variations that are
normal to the surface of discontinuity. Thus, the analysis to show that the equations of sensitivity are
bounded in this case follows closely the previous case with a few minor modifications.

In the case where the nominal trajectory crosses the surface of discontinuity but does not do so
transversally, it will be the case that there exists ¢ such that for almost every ¢ € (t; — d,¢; + &) we have
L g(he(§),u(t)) > 0 and Lg,g(d:(€),u(t)) > 0. Moreover, given any vy > 0 we may choose 6 to be to be
small enough so that v < Ly,g(¢¢(€),u(t)) for almost every t € (t; — d,t1 + 6). This is a consequence
of the trajectory not leaving the surface of discontinuity transversally. Thus, for € small enough, will
again have that f5(¢) < 0 for almost every ¢ such that of(¢) € X°. Thus, the previous analysis can again
can be applied to this situation with minor modifications to show that the variations on the regularized
trajectory remain bounded as the trajectory flows through the interior of the region of regularization.
We omit the details of the proof for these final two cases, because it would involve reintroducing the large
number of bounds and notations introduced in the case of sliding without providing much new insight.

A.2 Proof of Lemma 4

By the proof of Lemma [2| we see that that there exists a neighborhood of £ on which the map ¢, is
continuous for each t € [0,T] (this is a well known property of Filippov solutions [4, Chapter 2, Section
7]). This demonstrates assumptions [2f and |4 hold in a neighborhood of £&. We then see that [3| holds in a
neighborhood of £ by noting that fi; and fo are assumed to be continuous.

A.3 Proof of Lemma 3

In order to again simplify our analysis, we again make the simplifying assumptions made in the proof
of Lemma [2| That is, we again assume that the nominal trajectory of the discontinuous system reaches
the surface of discontinuity exactly once at time t; € T¢ and that 2y € D;. We also reuse all of the
terminology and notation from the proof of Lemma We again prove the desired result by studying
the equations of sensitivity for the relaxed system, and demonstrating that the map ¢ — D¢y (&;5€) is
Lipschitz continuous when we restrict our attention to values of € that are small enough.

For each € > 0, we define the fast time scale

t—t°
= 83
r=1= (83)
on this timescale, the the dynamics of the sensitivity equations are given by
d
3.92°(7) = el(1 = *(7)) ALy (1) + 97 (1)]02" (1) + w* () f1(7) 02 (7). (84)

We again begin by studying the case where the nominal trajectory of the discontinuous systems crosses
the surface of discontinuity transversally. That is, we assume that there exists é > 0 such that for each
t € (t1 —0,t1 +0) we have Ly g(¢¢(§),u(t)) > 0 and Lg,g(d:(€),u(t)) > 0. Similarly, to the proof of
Lemmal2] our analysis in this case largely relies on the fact that for each € small enough the corresponding
regularized trajectory will spend on the order of € units of time in the region of regularization. In
particular, we begin by bounding:
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