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Abstract— We introduce a holistic framework for the anal-
ysis, approximation and control of the trajectories of hybrid
dynamical systems which display event-triggered discrete jumps
in the continuous state. We begin by demonstrating how to
explicitly represent the dynamics of this class of systems using
a single piecewise-smooth vector field defined on a manifold,
and then employ Filippov’s solution concept to describe the
trajectories of the system. The resulting hybrid Filippov solu-
tions greatly simplify the mathematical description of hybrid
executions, providing a unifying solution concept with which
to work. Extending previous efforts to regularize piecewise-
smooth vector fields, we then introduce a parameterized family
of smooth control systems whose trajectories are used to
approximate the hybrid Filippov solution numerically. The two
solution concepts are shown to agree in the limit, under mild
regularity conditions.

I. INTRODUCTION

Hybrid dynamical systems are a natural abstraction for
many physical and cyber-physical systems [1], [2]. Yet, de-
spite extensive efforts to characterize the subtle interactions
that arise between continuous and discrete dynamics [3], [4],
[5], [1], the dynamical properties of hybrid systems are not
adequately understood.

In this paper, we extend the geometric approach advocated
in [6], and reduce a given hybrid system to a piecewise-
smooth control system defined on a manifold. Applying
Filippov’s convention [7] to this system, we characterize the
trajectories of each hybrid system using a single differential
inclusion. These hybrid Filippov solutions are not defined
using discrete transitions, and thus are not subject to many
of the theoretical challenges facing traditional constructions
of hybrid executions. To illustrate this point, throughout
the paper we will consider how our approach simplifies
the mathematical description of Zeno executions [8], hybrid
trajectories which undergo an infinite number of discrete
transitions in a finite amount of time.

However, numerical tools for simulating, analyzing and
controlling Filippov systems are far less developed than they
are for smooth dynamical systems. Therefore, we build on
the work of [9] and demonstrate how to approximate the
hybrid Filippov solution using a parameterized family of
smooth, stiff control systems defined on the relaxed topology
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from [10]. Under standard regularity assumptions, these
relaxations are shown to recover the hybrid Filippov solution
as the appropriate limit is taken. Our relaxations provide
a foundation for controlling hybrid systems using standard
numerical algorithms developed for smooth control systems
[11], [12]. Proofs of claims made in the paper can be found in
[13], where numerous examples are explored and a thorough
literature review is provided.

II. MATHEMATICAL NOTATION

In this section we fix mathematical notation used through-
out the paper. Given a set D, ∂D is the boundary of D and
int(D) is the interior of D. For a topological space V , we let
B(V ) denote all subsets of V . Given a metric space (X, d),
we denote the ball of radius δ centered at x ∈ X by Bδ(x).
The 2-norm is our metric of choice for finite-dimensional
real spaces, unless otherwise noted. We use coS to denote
the convex closure of a set S, which is a subset of some
vector space V . The disjoint union of a collection of sets
{Dj}j∈J is denoted

∐
j∈J Dj =

⋃
j∈J Dj × {j}, which is

endowed with the piecewise topology. Given x ∈ Dj × {j},
we will frequently abuse notation and simply write x ∈ Dj

when context makes our meaning clear. Throughout the paper
we use the term smooth to mean infinitely differentiable and
it is understood that diffeomorphisms are smooth mappings.

We assume familiarity with the notions of topological
manifolds and quotient spaces, and refer the reader to [13]
or [14] if they are unfamiliar with these concepts. For a
topological space S and a function f : A → B, where
A,B ⊂ S , we define Λf to be the smallest equivalence
relation containing the set

{
(a, b) ∈ S × S : a ∈ f−1(b)

}
,

and denote the set of equivalence classes by S
Λf

. There
is a natural quotient projection π : S → S

Λf
taking each

s ∈ S to its equivalence class [s] ∈ S
Λf

and we endow
S

Λf
with the quotient topology. Given a smooth manifold

M and compact set of allowable inputs U ⊂ Rm, we say
that a function F : M × U → TM is a vector field on
M if, for each X ∈ M and u ∈ U , F (X,u) ∈ TXM.
Throughout the paper, we will consider input signals in
the space of piecewise-continuous controls, which will be
denoted PC([0, T ], U). Given a vector field defined on Rn,
we will frequently abuse notation and say f : Rn×U → Rn
when we should write f : Rn × U → TRn.

III. FILIPPOV SOLUTIONS

We now introduce Filippov’s solution concept [7] for
differential equations with discontinuous right-hand sides. In
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the sequel we will use these solutions to locally describe
the dynamics of our class of hybrid systems. Throughout
the paper, we will primarily focus on the existence and
uniqueness of solutions. However, given our construction of
the hybrid Filippov solution, it is straightforward to apply
any known property of Filippov’s solution concept to our
class of hybrid systems.

To simplify exposition, throughout the majority of the
paper we will restrict our attention to hybrid trajectories
that can be locally described using a bimodal discontinuous
vector field f : Rn × U → Rn of the form

f(x, u) =

{
f1(x, u) if x ∈ D1

f2(x, u) if x ∈ D2,
(1)

where, given a smooth, regular function g : Rn → R, we put
D1 = {x ∈ Rn : g(x) < 0} and D2 = {x ∈ Rn : g(x) > 0},
and for i ∈ {1, 2} we require fi : Rn × U → Rn to
be smooth and globally Lipschitz continuous. Note that
the discontinuity set for f is confined to the surface
Σ: = {x ∈ Rn : g(x) = 0}. In Section VIII and in [13] we
consider several examples of hybrid models whose dynamics
can be locally represented by piecewise-smooth vector fields
with multiple, overlapping surfaces of discontinuity.

The Filippov Regularization of a general discontinuous
vector field f̃ : Rn × U → Rn is the set-valued map
F [f̃ ] : Rn × U → B(Rn) defined by

F
[
f̃
]
(x, u) =

⋂

δ>0

⋂

µ(S)=0

cof(Bδ(x) \ S, u), (2)

where
⋂
µ(S)=0 denotes the intersection over all sets of zero

measure in the sense of Lebesgue. We say that a Filippov
solution for the differential equation ẋ(t) = f̃(x(t), u(t))
given initial data x0 ∈ D and control u ∈ PC([0, T ], U)
is an absolutely continuous curve x : [0, T ]→ Rn such that
x(0) = x0 and ẋ(t) ∈ F

[
f̃
]
(x(t), u(t)) a.e. t ∈ [0, T ].

We next consider the existence and uniqueness of Filippov
solutions for the piecewise-smooth vector field (1). Lemmas
1 and 2 are adapted from results in [7, Chapter 2], and we
discuss how to obtain these particular results in [13].

Lemma 1: Consider the discontinuous system (1). For
each (x0, u) ∈ Rn × PC([0, T ], U) there exists a Filip-
pov solution x : [0, T ] → Rn for the differential equation
ẋ(t) = f(x(t), u(t)).

That is, Filippov solutions for the discontinuous system
(1) exist on bounded time intervals. The following is a
sufficient condition for the uniqueness of Filippov solutions
corresponding to (1).

Assumption 1: Consider the discontinuous system (1).
For each (x, u) ∈ Σ × U either ∇g(x) · f1(x, u) > 0 or
∇g(x) · f2(x, u) < 0.

Assumption 1 rules out a number of pathological cases
where trajectories skim the surface of discontinuity at points
where f1(x, u) and f2(x, u) are both tangent to Σ.

Lemma 2: Let Assumption 1 hold for the discontinuous
system (1). Then for each (x0, u) ∈ Rn × PC([0, T ], U)

there is a unique Filippov solution x : [0, T ] → Rn for the
differential equation ẋ(t) = f(x(t), u(t)).

In cases where x ∈ Σ, ∇g(x) · f1(x, u) > 0 and
∇g(x) · f2(x, u) < 0, Filippov’s convention allows us to
equivalently describe the dynamics of the system using a
sliding vector field defined on Σ [7, Chapter 1].

IV. RELAXED FILIPPOV SYSTEMS

Teixeira has developed a framework for approximating
the dynamics of autonomous, piecewise-smooth vector fields
using a parameterized family of smooth, stiff vector fields
(see e.g. [9]). Here, we generalize the approach to control
systems of the form (1). In Section VII, we will modify this
approach to locally approximate the hybrid Filippov solution.
The following class of functions will be used to regularize
(1) near the surface of discontinuity.

Definition 1: We say that ϕ ∈ C∞(R, [0, 1]) is a transi-
tion function if i) ϕ(a) = 0 if a ≤ −1, ii) ϕ(a) = 1 if
a ≥ 1, and iii) ϕ is monotonically increasing on (−1, 1).

For the rest of the section, we assume that a single tran-
sition function ϕ has been chosen. We then define for each
ε > 0 the function ϕε : Rn → R by ϕε(x) = ϕ

(
g(x)
ε

)
, and

then define the ε-relaxation of (1) to be fε : Rn × U → Rn
where

fε(x, u) = (1− ϕε(x))f1(x, u) + ϕε(x)f2(x, u). (3)

The relaxation occurs by smoothing (1) along

Σε : = {x ∈ Rn : − ε ≤ g(x) ≤ ε}. (4)

Indeed, note that fε(x, u) = f1(x, u) if x ∈ D1 \ Σε,
fε(x, u) = f2(x, u) if x ∈ D2 \ Σε, and fε(x, u) produces
a convex combination of f1(x, u) and f2(x, u) if x ∈ Σε.

Lemma 3: For each ε > 0, the relaxed vector field (3) is
smooth.

The following two theorems characterize the behavior of
the relaxed system as ε → 0. In Section VII, these results
will be extended to our relaxed solution concept for hybrid
systems.

Theorem 1: Let Assumption 1 hold for the discontinuous
system (1). Fix (x0, u) ∈ Rn × PC([0, T ], U) and let
x : [0, T ] → Rn be the corresponding (unique) Filippov
solution for (1), and for each ε > 0 let xε : [0, T ]→ Rn be
the corresponding solution to the relaxed system (3). Then
∃C > 0 and ε0 > 0 such that for each ε ≤ ε0

‖x− xε‖∞ ≤ Cε. (5)
The result is obtained by transforming the relaxed system

into a singular perturbation problem (see e.g. [15, Chapter
6.3]), and applying standard convergence results from the
literature. However, even when Assumption 1 is not satisfied,
the solutions of the relaxed system still converge uniformly
to a well-defined limit.

Theorem 2: Fix (x0, u) ∈ Rn × PC([0, T ], U) and for
each ε > 0 let xε : [0, T ] → Rn be the corresponding
solution to the relaxed system (3). Then there exists an
absolutely continuous curve x0 : [0, T ]→ Rn such that

lim
ε→0

∥∥xε − x0
∥∥
∞ = 0. (6)



V. HYBRID DYNAMICAL SYSTEMS

In this section we define our class of hybrid dynamical
systems, discuss technical assumptions made throughout the
paper, and introduce and characterize the topological spaces
upon which we will define the hybrid Filippov solution and
its relaxations.

A. Hybrid Dynamical Systems

Definition 2: A hybrid dynamical system is a seven-tuple

H = (J ,Γ,D, U,F ,G ,R ), (7)

where:
• J is a finite set indexing the discrete states of H;
• Γ ⊂ J × J is the set of edges, forming a graphical

structure over J , where edge e = (j, j′) ∈ Γ corre-
sponds to a transition from j to j′;

• D = {Dj}j∈J is the set of domains, where Dj ⊂ Rn
is a smooth, connected n-manifold with boundary;

• U ⊂ Rm is a compact set of allowable inputs;
• F = {fj}j∈J is the set of vector fields, where each
fj : Rn × U → Rn defines the dynamics on Dj ;

• G = {Ge}e∈Γ is the set of guards, where each G(j,j′) ⊂
∂Dj is a smooth, embedded (n− 1)-manifold;

• R = {Re}e∈Γ is the set of reset maps, where
R(j,j′) : Rn → Rn and R(j,j′)(G(j,j′)) ⊂ ∂Dj′ .

Before enumerating the technical assumptions we make
throughout the paper, we provide a simple definition for the
executions of a hybrid dynamical system that resembles most
definitions in the literature, which we will use to highlight the
features of the hybrid Filippov solution and its relaxations.

Definition 3: Let H be a hybrid dynamical system and let
(x0, u) ∈ Dq1×PC([0, T ], U). Let {qk}Nk=1 be a sequence of
discrete states, where N ∈ N is possibly infinite, let {ek}N−1

k=1

be a sequence of edges where ek = (qk, qk+1), let 0 =
t1 ≤ t2 ≤ · · · ≤ tN ≤ tN+1 = T , and let {xk}Nk=1 where
xk : [tk, tk+1] → Dqk is absolutely continuous satisfy the
following conditions:

x1(0) =x0 (8)
ẋk(t) = fqk(xk(t), u(t)), ∀t ∈ [tk, tk+1) (9)

xk(tk+1) ∈ Gek (10)
xk+1(tk+1) = Rek(xk(tk+1)). (11)

Then we say that x : [0, T ]→∐
j∈J Dj where

x(t) = xk(t)× {qk}, ∀t ∈ [tk, tk+1] (12)

is a hybrid execution corresponding to (x0, u).
Note that we have defined a hybrid execution to be multi-

valued at the transition times {tk}Nk=2. We say that a hybrid
execution is Zeno if N = ∞. A hybrid execution which
is Zeno is depicted in Figure 1. The following assumption
guarantees the existence and uniqueness of solutions to the
ordinary differential equations defined on each continuous
domain.

Assumption 2: For each j ∈ J , the vector field fj is
smooth and Lipschitz continuous.

G(1,2) G(2,1)

R(1,2)

R(2,1)

x(0) p p0

Fig. 1: A hybrid execution x evolves from initial condition
x(0) on the disjoint union D1

∐
D2. The trajectory is Zeno,

undergoing an infinite number of discrete jumps in a finite
amount of time. The portions of x in D1 accumulate to the
point p, and the portions in D2 accumulate to the point p′.
The hybrid system has two edges: (1, 2) and (2, 1), where
R(1,2)(G(1,2)) = G(2,1) and R(2,1) = R−1

(1,2).

The hybrid Filippov solution will be defined on the hybrid
quotient space or hybridfold from [6], and its relaxations
will be defined on the relaxed version of this topology from
[10]. We introduce these important concepts in Sections V-B
and V-D, but first make assumptions which will ensure that
these spaces are sufficiently regular, and also simplify the
initial introduction of our framework. We first make a strong
assumption about the geometry of guard sets and their images
under reset maps.

Assumption 3: For each e = (j, j′) ∈ Γ, Ge and Re(Ge)
are subsets of (n−1)-dimensional hyperplanes. Specifically,
there exists unit vectors ĝe, r̂e ∈ Rn and scalars ce, de such
that Ge ⊂ G̃e and Re(Ge) ⊂ Re(G̃e) ⊂ R̃e, where

1) G̃e : =
{
x ∈ Rn : ge(x) : = ĝTe x− ce = 0

}
, and

2) R̃e : =
{
x ∈ Rn : re(x) : = r̂Te x− de = 0

}
.

Furthermore, ge(x) < 0 for each x ∈ Dj \Ge, and re(x) > 0
for each x ∈ Dj′ \Re(Ge).

In Sections V-C and V-D we will demonstrate how to
explicitly construct a collection of coordinate charts for the
hybrid quotient space and its relaxations, and our approach
will rely on this assumption. In practice, we have found that
it is often possible to get around this assumption by adding
auxiliary continuous states to the hybrid system, or by simply
choosing a coordinate system in which the assumption is
satisfied. 1 This point is illustrated by our examples in [13].

The following assumption is crucial for ensuring that
the hybrid quotient space and its relaxations are smooth
manifolds (see [6, Theorem 1] or [16, Theorem 3]).

Assumption 4: For each e ∈ Γ the map Re is a diffeo-
morphism. Furthermore, ∇Re and ∇R−1

e are both globally
Lipschitz continuous.

Requiring the invertibility of each reset map is a strong
technical assumption. A number of application domains,

1Since each continuous domain is assumed to be a n-dimensional
manifold with boundary in Definition 2, for each e ∈ Γ there must
exist a collection of boundary charts covering Ge and Re(Ge). More-
over, in coordinates both of these sets will be defined locally by
{(x1, . . . , xn) ∈ Rn : xn = 0}. Thus, in principle we could always satisfy
Assumption 3 by working in local coordinates where appropriate throughout
the paper. However, we make Assumption 3 since in practice we may not
have access to the necessary charts.



such as robotic bipedal walking [2], typically utilize hybrid
models with rank-deficient reset maps. Nevertheless, as we
illustrate with our examples, it is often possible to transform
these hybrid systems into ones which do satisfy Assump-
tion 4 by adding auxiliary continuous states to the system.
Oftentimes, these extra states have physically meaningful
interpretations. The assumption on the gradients of the reset
maps will ensure that the vector fields we define on the
(relaxed) hybrid quotient space are sufficiently regular for
our purposes.

Next, we impose an assumption which will ensure that we
can locally describe the trajectories of our hybrid systems
using vector fields of the form (1).

Assumption 5: The elements of {Ge}e∈Γ ∪ {Re(Ge)}e∈Γ

are mutually disjoint.
We initially assume elements of {Ge}e∈Γ ∪ {Re(Ge)}e∈Γ

do not intersect for notational convenience, and will indicate
throughout the paper and in [13] ways to weaken this
assumption. Just as in [16, Theorem 3], our final assumption
ensures the hybrid quotient space and its relaxations are
topological manifolds without boundary.

Assumption 6: For each j ∈ J and x ∈ ∂Dj there exists
e ∈ Γ such that either x ∈ Ge or x ∈ Re(Ge).

Assumption 6 is also made primarily for convenience, as
working with manifolds with boundary requires additional
overhead. As discussed in [13], the results of this paper go
through in a natural way when this assumption is lifted.

B. The Hybrid Quotient Space

The main idea behind the construction of the hybrid
quotient space, which is depicted in Figure 2, is to identify
or ”glue” each point x ∈ Ge to the point Re(x) ⊂ Re(Ge).
This process unifies the domains {Dj}j∈J into a single
topological space. As depicted in Figure 2, we can inter-
pret hybrid executions as continuous curves on the hybrid
quotient space. We refer the reader to [6] for a number
of simple examples which clearly illustrate these concepts.
In what follows, we closely follow the notation developed
in [10]. Formally, for a given hybrid system H, we define
R̂ :

∐
e∈ΓGe →

∐
j∈J Dj by R̂(x) = Re(x) if x ∈ Ge,

and then define the hybrid quotient space to be

M =

∐
j∈J Dj

ΛR̂
. (13)

Recalling our notation from Section II, ΛR̂ is an equiva-
lence relation on

∐
j∈J Dj , wherein the equivalence class for

each point x ∈ Ge is the set {x,Re(x)}. The hybrid quotient
space is endowed with a quotient map π :

∐
j∈J Dj →M

that takes each point x̂ ∈ ∐j∈J Dj to its equivalence class
[x̂] ∈ M. Since the points x and Re(x) above belong to
the same equivalence class, they are sent to a single point
π(x) = π(Re(x)) ∈M.

For notational clarity later on, for each j ∈ J we define
the map πj : Dj →M by πj(x) = π(x×{j}), which takes
each point in Dj ⊂ Rn to the corresponding point inM. As
shown in Figure 2, each domain Dj is represented onM by

G(1,2)

R(1,2) X(0)

R(1,2)(G(1,2))

⌃(1,2)

ĝ(1,2)

r̂(1,2)

Fig. 2: Construction of the hybrid quotient space from the
disjoint union of the continuous domains for a bimodal
hybrid system with a single edge e = (1, 2). A hybrid
execution x transitions from mode 1 to mode 2 on D1

∐
D2.

The continuous curve X = π ◦ x is the representation of x
on M.

the regular domain πj(Dj) ⊂M. For each e = (j, j′) ∈ Γ,
Ge ⊂ ∂Dj and Re(Ge) ⊂ ∂Dj′ are collapsed to

Σe : = πj(Ge) = πj′(Re(Ge)), (14)

which is a co-dimension-1 sub-manifold of M separating
the interiors of πj(Dj) and πj′(Dj′). 2

As noted in [6],M is always metrizable when our standing
assumptions are satisfied; that is, there exists a state-space
metric d : M ×M → R+. One such metric is explicitly
constructed in [10]. For our purposes, we assume that a
specific metric has been chosen, which we will refer to
as d. Whenever we refer to a curve as being (absolutely)
continuous onM, it is understood that we mean (absolutely)
continuous with respect to d. Using the map π, we can
descend a hybrid execution to a continuous curve on M,
as depicted in Figure 2. The hybrid Filippov solution will
directly generate continuous curves on M.

C. Charting the Hybrid Quotient Space

Under our standing assumptions, the hybrid quotient space
is in fact a smooth topological manifold [16, Theorem 3]. By
regarding M as a manifold, in Section VI we will be able
to define a single piecewise-smooth vector field on M that
captures the dynamics of the hybrid system. In this section,
we demonstrate how to explicitly construct a set of smoothly
compatible coordinate charts for M.

First, for each e = (j, j′) ∈ Γ, we define

De : = int(πj(Dj))
⋃

Σe
⋃
int(πj′(Dj′)), (15)

which is an open subset of M, and shown in Figure 4.
In order to construct a coordinate chart for De, we need
to define a set D̂e ⊂ Rn and a bijection from De to D̂e.
However, we first require a few intermediate constructions.
For each e = (j, j′) ∈ Γ, define pe : Rn → Rn by
pe(x) = x − ĝege(x), the Euclidian projection onto G̃e.3

2Consider the hybrid system depicted in Figure 1. When constructing the
hybrid quotient space for this system, the surfaces G(1,2) and G(2,1) are
sent to a single surface. Thus, we can remove one of the edges from this
hybrid system to satisfy Assumptions 3, without changing the structure of
M. As noted in Section VI, removing this redundant edge will not affect
our two solution concepts, which still capture the behavior of this system.

3When G̃e is a general nonlinear surface, it may not be possible to write
down a closed-form expression for the projection onto G̃e, as our approach
requires.



ge(x)

Re � pe(x)

ge(x)
pe(x)

R̄e(x)

G̃e
R̃e

R̄e

R̄�1
e

D2,e

D̂e

Fig. 3: The domain D2 is smoothly attached to domain D1,
using the map R̄e and resulting in D2,e : = R̄−1

e (D2),
for edge e = (1, 2). The various components of R̄e are
illustrated.

D1

G(1,2)

D2,(1,2)

D̂(1,2)

⌃(1,2)

⇡(1,2)

p

⇡�1
(1,2)

X(0)

D(1,2)

⇡1(p) = ⇡2(p
0)

Fig. 4: The hybrid system from Figure 1 with the edge (2, 1)
removed. The set D̂(1,2) is depicted on the left, and D(1,2) =
M is depicted on the right. A hybrid Filippov solution X
spirals towards the point π1(p) = π2(p′), crossing Σ(1,2) an
infinite number of times. The curve X can be constructed by
setting X = π(1,2) ◦ x, where x is a Filippov solution of the
vector field f(1,2) with initial condition x(0) = π−1

(1,2)(X(0)).

Next, define the map R̄e : Rn → Rn by

R̄e(x) = Re ◦ pe(x) + r̂ege(x), (16)

and consider the set Dj′,e : = R̄−1
e (Dj′). As depicted in

Figure 3, Dj′,e is the result of attaching Dj′ to Dj , by
passing Dj′ through the map R̄−1

e . To understand R̄e, first
note that each x ∈ Rn may be decomposed as x = pe(x) +
ĝege(x). Intuitively, R̄e performs this decomposition, and
then takes pe(x) to Re(pe(x)) and ĝege(x) to r̂ege(x). Thus,
the first term in R̄e maintains the one-to-one relationship
between G̃e and R̃e that Re|G̃e

defines, while the second
term in R̄e defines a correspondence between the direction
that is normal to G̃e and the direction that is normal to R̃e.
It is not difficult to verify that R̄e is a diffeomorphism, and
in [13] we give a closed-form representation for its inverse.

Finally, for each e = (j, j′) ∈ Γ we define

D̂e = int(Dj)
⋃
Ge
⋃
int(Dj′,e) (17)

and then define the bijection πe : D̂e → De by

πe(x) =

{
πj(x) if x ∈ Dj

πj′ ◦ R̄e(x) if x ∈ Dj′,e.
(18)

Theorem 3: Let H be a hybrid dynamical system. Then
we may endowM with the structure of a smooth topological

manifold whose smoothly compatible atlas of coordinate
charts is given by

{
De, π

−1
e

}
e∈Γ

.
The details of the proof are given in [13], but the argument

closely follows the proof of [14, Theorem 9.29]. Note that
[6] and [16] both showed that it was possible to construct a
family of coordinate charts forM. However, in both of these
works the coordinate charts are defined implicitly, and thus
do not provide explicit representations for portions of M.
By providing closed-form representations for our coordinate
charts, in Section VI we will be able to directly analyze
portions of the hybrid Filippov solution using concrete vector
fields defined on

{
D̂e

}
e∈Γ

. However, our approach does rely
on Assumption 3, which is not made in either [6] or [16].

D. Relaxed Hybrid Topology

We now introduce the relaxed hybrid topology from [10],
which is constructed by attaching an ε-thick strip to each of
the guard sets of the hybrid system. Tolerances of this sort
have been widely used to ensure hybrid models accurately
reflect the dynamics of the physical process they are meant
to represent [8]. We also introduce relaxed versions for
a number of our previous constructions. This introduction
is brief, since many of these objects are quite similar to
previous definitions. However, many of these items are
depicted in either Figure 5 or Figure 6.

First, for each e ∈ Γ and ε > 0 we define the relaxed strip

Sεe := {p+ ĝeq ∈ Rn : p ∈ Ge and q ∈ [0, ε]}. (19)

For each j ∈ J we then define

Nj : = {e ∈ Γ: ∃j′ ∈ J s.t. e = (j, j′)}, (20)

the set of edges leaving mode j, and then define the relaxed
domain Dε

j = Dj ∪e∈Nj
Sεe . Next, for each e = (j, j′) ∈ Γ

we define the relaxed guard set

Gεe :=
{
x ∈ Sεe : gεe(x) : = ĝTe x− (ce + ε) = 0

}
, (21)

and then define the relaxed reset map Rεe : Rn → Rn by
Rεe(x) = Re(x− ĝeε). Note that Rεe(G

ε
e) = Re(Ge).

Next, we define R̂ε :
∐
e∈ΓG

ε
e →

∐
j∈J D

ε
j by R̂ε(x) =

Rεe(x) if x ∈ Gεe and then define the relaxed hybrid quotient
space to be

Mε =

∐
j∈J D

ε
j

ΛR̂ε

. (22)

The construction of the relaxed hybrid quotient space is
depicted in Figure 5. For the rest of the paper, we let
dε : Mε ×Mε → R+ be a state-space metric on Mε. It
is understood that continuity on Mε is defined with respect
to dε. Letting πε :

∐
j∈J D

ε
j →Mε denote the quotient map

for Mε, for each j ∈ J we define the map πεj : Dε
j →Mε

by πεj (x) = πε(x × {j}). Then for each e = (j, j′) ∈ Γ
we define Σεe : = πεj (S

ε
e). Just as Σe is a surface separating

πj(Dj) from πj′(Dj′) on M, Σεe is an ε-thick strip that
separates πεj (Dj) and πεj′(Dj′) on Mε.

Next, we construct a collection of coordinate charts for
Mε. First, for each e = (j, j′) ∈ Γ we define

Dε
e : = int(πεj (Dj))

⋃
Σεe
⋃
int(πεj′(Dj′)). (23)
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Fig. 5: Construction of the relaxed hybrid quotient space
from the disjoint union of the relaxed continuous domains
for a bimodal hybrid system with a single edge e = (1, 2).

Subsequently, we define the map pεe : Rn → Rn by
pεe = x− ĝegεe(x), the Euclidian projection onto the plane
containing Gεe. We then let R̄εe : Rn → Rn be such that

R̄εe(x) = Rεe ◦ pεe(x) + r̂eg
ε
e(x), (24)

and then define Dε
j′,e = (R̄εe)

−1(Dj′). Finally, we define

D̂ε
e : = int(Dj)

⋃
Sεe
⋃
int(Dε

j′,e), (25)

and let the bijection πεe : D̂ε
e → Dε

e be defined by

πεe(x) =

{
πεj (x) if x ∈ Dj ∪ Sεe
πεj′ ◦ R̄εe(x) if x ∈ Dε

j′,e.
(26)

Theorem 4: Let H be a hybrid dynamical system. Then
for each ε > 0 we may endow Mε with the structure of
a smooth topological manifold whose smoothly compatible
atlas of coordinate charts is given by

{
Dε
e, (π

ε
e)
−1
}
e∈Γ

.

VI. HYBRID FILIPPOV SOLUTIONS

We now apply Filippov’s solution concept to our class of
hybrid dynamical systems. We begin by defining a single
piecewise-smooth vector field on M.

To construct this vector field, for each j ∈ J we define
Fj : πj(Dj)×U → Tπj(Dj) by Fj = Dπj ◦ fj . Intuitively,
Fj is simply the representation of the vector field fj on the
set πj(Dj).

Definition 4: Let H be a hybrid dynamical system. We
define the hybrid vector field F : M× U → TM by

F (X,u) = Fj(X,u) if X ∈ int(πj(Dj)). (27)
Note that F is discontinuous and undefined on the surface

Σe, for each e ∈ Γ. Due to Assumption 5, these surfaces of
discontinuity do not intersect. In Section VIII and [13] we
consider several examples where surfaces of discontinuity in
the hybrid vector field overlap.

For each e = (j, j′) ∈ Γ, we define fe : D̂e×U → Rn by
fe = Dπ−1

e ◦ F , the coordinate representation of F on the
set D̂e. The closed form representation of fe is given by

fe(x, u) =

{
fj(x, u) if x ∈ int(Dj)

fj′,e(x, u) if x ∈ int(Dj′,e),
(28)

where fj′,e : Dj′,e × U → Rn is defined by

fj′,e(x, u) =
(
∇R̄e(x)

)−1 · fj′(R̄e(x), u). (29)

Just as Fj′ is the representation of fj′ on the set πj′(Dj′),
fj′,e is the representation of fj′ on the set Dj′,e. The
following result is a consequence of Assumptions 2 and 4
and ensures that the result of Lemma 1 applies to fe.

Lemma 4: For each e = (j, j′) ∈ Γ the vector field fj′,e
is smooth and Lipschitz continuous.

We now use the Filippov regularizations for {fe}e∈Γ to
define the hybrid Filippov regularization for F , and subse-
quently the hybrid Filippov solution.

Definition 5: Let H be a hybrid dynamical system. The
hybrid Filippov regularization of the vector field F is the
set-valued map F̂ [F ] : M× U → B(TM) where

F̂ [F ]|De×U = Dπe(F [fe]), ∀e ∈ Γ. (30)

For initial condition X0 ∈M and input u ∈ PC([0, T ], U),
we say that the absolutely continuous curve X : [0, T ]→M
is a hybrid Filippov solution for this data if X(0) = X0 and

Ẋ(t) ∈ F̂ [F ](X(t), u(t)) a.e. t ∈ [0, T ]. (31)
As shown in Figure 4, each portion of a hybrid Filippov

solution can be explicitly constructed using a Filippov so-
lution corresponding to one of the piecewise-smooth vector
fields {fe}e∈Γ. Thus, the vector fields {fe}e∈Γ can be used
to locally assess properties of the hybrid Filippov solution
such as stability, controllability, and dependence on initial
conditions and parameters [17], [7]. In [13], we demonstrate
how to construct a full hybrid Filippov solution using a
boundary value problem similar to the one in Definition
3, in a manner resembling how integral curves are usually
constructed on topological manifolds [14, Chapter 9].

Note that hybrid Filippov solutions can cross back and
forth across each surface of discontinuity in F . Consequently,
for each e = (j, j′) ∈ Γ, it is as if we have implicitly
added an extra edge ē = (j′, j) to the hybrid system, where
Gē = Re(Ge) and Rē = R−1

e . Thus, as depicted in Figure 4,
we can safely remove one of the edges of the hybrid system
depicted in Figure 1, and still have the hybrid Filippov
solution faithfully capture the dynamics of the system. Note
that the hybrid Filippov solution depicted in Figure 4 can
be constructed using a single Filippov solution of the vector
field f(1,2), whereas constructing a hybrid execution for this
data would have required an infinite number of reset map
evaluations.

Finally, we discuss the existence and uniqueness of the
hybrid Filippov solution for H. By Lemmas 1 and 4, for
each e ∈ Γ, Filippov solutions for the vector field fe
exist on bounded time intervals, up until the solutions leave
D̂e. Consequently, hybrid Filippov solutions for H exist on
bounded time intervals, up until each solution leavesM. The
following assumption is analogous to Assumption 1.

Assumption 7: Let H be a hybrid dynamical system. Then
for each e = (j, j′) ∈ Γ and each (x, u) ∈ Ge × U either
ĝTe · fj(x, u) > 0 or r̂Te · fj′(Re(x), u) < 0.

Indeed, by carefully inspecting the terms in (28), one can
see that if Assumption 7 holds H, then Assumption 1 holds
for fe, for each e ∈ Γ.



Theorem 5: Let H be a hybrid dynamical system sat-
isfying Assumption 7. Suppose there exists a hybrid Fil-
ippov solution X : [0, T ] → M for the data (X0, u) ∈
M× PC([0, T ], U). Then X is the unique hybrid Filippov
solution corresponding to this data.

In general, if one is able to verify the uniqueness of the
Filippov solutions for the vector fields {fe}e∈Γ using a know
result, then the uniqueness of the hybrid Filippov solution
can be immediately verified.

VII. RELAXED HYBRID VECTOR FIELDS

Using our previous constructions, we can easily extend the
smoothing technique introduced in Section IV to the hybrid
vector field F . For each ε > 0, this process will result in a
smooth vector field F ε : Mε × U → TMε.

First, for each e = (j, j′) ∈ Γ and ε > 0 we define
fεj′,e : Dε

j′,e × U → Rn by

fεj′,e(x, u) =
(
∇R̄εe(x)

)−1 · fj′(R̄εe(x), u), (32)

which is the representation of fj′ on Dε
j′,e. Note that fεj′,e

is just a translated version of fj′,e.
Lemma 5: For each e = (j, j′) ∈ Γ the vector field fεj′,e

is smooth and Lipschitz continuous.
We now modify the class of transition functions introduced

in Section IV.
Definition 6: We say that ϕ ∈ C∞(R, [0, 1]) is a hybrid

transition function if i) ϕ(a) = 0 if a ≤ 0, ii) ϕ(a) = 1 if
a ≥ 1, and iii) ϕ is monotonically increasing on (0, 1).

For the rest of the section, assume a single hybrid transi-
tion function ϕ has been chosen. Next, for each e = (j, j′) ∈
Γ and ε > 0 we define ϕεe : Rn → R by ϕεe(x) = ϕ( ge(x)

ε ),
and then define the vector field fεe : D̂ε

e × U → Rn by

fεe (x, u) = (1− ϕεe(x))fj(x, u) + ϕεe(x)fεj′,e(x, u). (33)

Note fεe (x, u) = fj(x, u) if x ∈ Dj , fεe (x, u) =
fεj′,e(x, u) if x ∈ Dε

j′,e, and that fεe (x, u) produces a convex
combination of fj(x, u) and fεj′,e(x, u) when x ∈ Sεe .

Lemma 6: Let H be a hybrid dynamical system. Then for
each e ∈ Γ and ε > 0 the vector field fεe is smooth.

For each e = (j, j′) ∈ Γ we then define
F εe : Dε

e × U → TDε
e by F εe = Dπεe ◦ fεe , which smoothly

transitions between the dynamics of mode j and the dynam-
ics of mode j′ along Σεe.

Definition 7: Let H be a hybrid dynamical system. Then
for each ε > 0 we define the relaxed hybrid vector field
F ε : Mε × U → TMε by

F ε(X,u) = F εe (X,u) if X ∈ Dε
e. (34)

For initial condition X0 ∈ M and input u ∈ PC([0, T ], U)
we say that the absolutely continuous curve Xε : [0, T ] →
Mε is a relaxed hybrid trajectory corresponding to this data
if Xε(0) = X0 and

Ẋε(t) = F ε(Xε(t), u(t)) a.e. ∀t ∈ [0, T ]. (35)
Note that we do not allow relaxed hybrid trajectories to

begin on the strips {Σεe}e∈Γ, since they are virtual objects
not present in the original hybrid system, instead requiring
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Fig. 6: A relaxed hybrid trajectory Xε with initial con-
dition Xε(0) flowing on Dε

(1,2) ⊂ Mε. This flow can
be constructed by setting Xε = πε(1,2) ◦ xε where xε is
an integral curve of fε(1,2) with initial condition xε(0) =

(πε(1,2))
−1(Xε(0)).

their initial conditions to be on M, which we regard as a
subset of Mε. The next result follows from the fact that F ε

is represented locally by the smooth vector fields {fεe }e∈Γ.
Theorem 6: Let H be a hybrid dynamical system. Then

for each ε > 0 the vector field F ε is smooth.
It is a fundamental result that the flows of smooth vector

fields depend smoothly on inputs and initial conditions [12,
Chapter 4.3]. The construction of the vector field F ε can be
thought of as a generalization of the regularization in space
introduced in [8], or an approximation to the smoothing
techniques discussed in [16] and [6]. As depicted in Figure
6, each portion of a relaxed hybrid trajectory can be con-
structed using one of the vector fields {fεe }e∈Γ. In [13], we
demonstrate how to construct a full relaxed hybrid trajectory
using a boundary value problem involving the vector fields
{fεe }e∈Γ, which can be discretized using standard techniques
for integrating stiff differential equations. Finally, we study
the limiting behavior of our relaxed solution concept.

Theorem 7: Let Assumption 7 hold for hybrid dynamical
system H. Let (X0, u) ∈ M × PC([0, T ], U), and let
X : [0, T ]→M be a hybrid Filippov solution corresponding
to this data, guaranteed to be unique by Theorem 5. For each
ε > 0, let Xε : [0, T ] → Mε be the corresponding relaxed
hybrid trajectory. Then ∃C > 0 and ε0 > 0 such that for
each ε ≤ ε0 and t ∈ [0, T ]

dε(X(t), Xε(t)) ≤ Cε. (36)
Here, as in [10], we have abused notation and regarded

a hybrid Filippov solution X as a curve on Mε. Next, we
demonstrate that our relaxations always converge uniformly
to a unique, well-defined limit even in cases where the hybrid
Filippov solution may be non-unique.

Theorem 8: Let H be a hybrid dynamical system. Fix
(X0, u) ∈ M × PC([0, T ], U), and for each ε > 0 let
Xε : [0, T ] → Mε be the corresponding relaxed hybrid
trajectory. Then there exists an absolutely continuous curve
X0 : [0, T ]→M such that for each t ∈ [0, T ]

lim
ε→0

dε
(
X0(t), Xε(t)

)
= 0. (37)

Due to the uniqueness of this limit, we have found it
convenient to think of hybrid dynamics as the limit of our



relaxations. Further work is required to determine whether
the limit in Theorem 8 is in fact a hybrid Filippov solution.

VIII. MODELING EXAMPLE

We breifly examine an example where surfaces of discon-
tinuity in the hybrid vector field overlap. Further details are
provided in [13], where additional examples are considered.

Consider a ball which is bouncing vertically and loses
a fraction of its energy during each impact. We model the
ball with two continuous states x = (x1, x2)T , where x1

is the height of the ball above the ground and x2 is the
velocity of the ball. When airborne, the continuous states
evolve according to d

dt (x1, x2)T = [x2,−g]T , where g > 0 is
the gravitational constant. When the ball hits the ground, the
velocity is reset according to x2 → −cx2, where c ∈ (0, 1]
is the coefficient of restitution. It is well known [8] that for
c ∈ (0, 1) the ball bounces an infinite number of times by
some finite time t∞, thus classical constructions of hybrid
executions for the bouncing ball are necessarily Zeno.

We model the bouncing ball with four discrete modes:
Jbb = {1, 2, 3, 4}. For j ∈ {1, 3} we define Dj ={

(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0
}

, and for j ∈ {2, 4} we de-
fine Dj =

{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≤ 0

}
. Thus in modes

1 and 3 the ball is moving upwards, and in modes 2 and 4
the ball is moving downwards. Our model has four edges:
Γbb = {(1, 2), (2, 3), (3, 4), (4, 1)}. For e ∈ {(1, 2), (3, 4)}
we define Ge =

{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 = 0

}
and

Re(x) = x. For e ∈ {(2, 3), (4, 1)} we define
Ge =

{
(x1, x2) ∈ R2 : x1 = 0, x2 ≤ 0

}
and Re(x) =

[x1,−cx2]T . Thus edges (1, 2) and (3, 4) are triggered when
the ball is at the apex of its flight, and edges (2, 3) and (3, 4)
are triggered when the ball hits the ground.

The hybrid quotient space for the bouncing ball, Mbb,
is depicted in Figure 7. In [13], we demonstrate how to
construct a single chart for Mbb wherein each continuous
domain is sent to one of the quadrants of R2. The hybrid
vector field has two overlapping surfaces of discontinuity:
Σ(1,2)∪Σ(3,4) and Σ(2,3)∪Σ(4,1). A hybrid Filippov solution
for the bouncing ball is depicted in Figure 7. The trajectory
crosses the surfaces of discontinuity an infinite number of
times before coming to rest at the origin for each t ≥ t∞, the
hybrid Filippov solution naturally extending the trajectory
past the Zeno point. As addressed in [13], we extend the
smoothing technique from [18] to relax the dynamics of the
bouncing ball.

IX. CONCLUSION AND FUTURE WORK

We employed Filippov’s solution concept for differential
equations with discontinuous right-hand sides to describe
the trajectories of a class of hybrid systems which display
discrete jumps in the continuous state. We then introduced a
family of smooth vector fields which can be used to approx-
imate these dynamics in the numerical setting, using existing
methods. Further work is required to characterize these two
new solution concepts, and to control their trajectories using
existing analytic and computational tools.

D1D2

D3 D4

X(0)

⇡1(D1)⇡2(D2)

⇡3(D3) ⇡4(D4)
⌃(1,2) [ ⌃(3,4)

⌃(2,3) [ ⌃(4,1)

a

j2Jbb

Dj

Fig. 7: A hybrid execution x for the bouncing ball evolves
on the disjoint union of the continuous domains, and the
corresponding hybrid Filippov solution X evolves on Mbb.
In each domain, the axis denotes the orientation of the two
continuous states.

REFERENCES

[1] I. A. Hiskens and M. Pai, “Trajectory sensitivity analysis of hybrid
systems,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 47, no. 2, pp. 204–220, 2000.

[2] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
Transactions on automatic control, vol. 46, no. 1, pp. 51–64, 2001.

[3] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice, “Hybrid
systems: generalized solutions and robust stability,” IFAC Proceedings
Volumes, vol. 37, no. 13, pp. 1–12, 2004.

[4] A. D. Ames and S. Sastry, “A homology theory for hybrid systems:
Hybrid homology,” in International Workshop on Hybrid Systems:
Computation and Control. Springer, 2005, pp. 86–102.

[5] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. S. Sastry,
“Dynamical properties of hybrid automata,” IEEE Transactions on
automatic control, vol. 48, no. 1, pp. 2–17, 2003.

[6] S. N. Simic, K. H. Johansson, J. Lygeros, and S. Sastry, “Towards
a geometric theory of hybrid systems,” Dynamics of Continuous,
Discrete and Impulsive Systems Series B: Applications and Algorithms,
vol. 12, no. 5-6, pp. 649–687, 2005.

[7] A. F. Filippov, Differential equations with discontinuous righthand
sides: control systems. Springer Science & Business Media, 2013,
vol. 18.

[8] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the
regularization of zeno hybrid automata,” Systems & control letters,
vol. 38, no. 3, pp. 141–150, 1999.

[9] J. Llibre, P. R. da Silva, M. A. Teixeira et al., “Sliding vector fields
via slow–fast systems,” Bulletin of the Belgian Mathematical Society-
Simon Stevin, vol. 15, no. 5, pp. 851–869, 2008.

[10] S. A. Burden, H. Gonzalez, R. Vasudevan, R. Bajcsy, and S. S.
Sastry, “Metrization and simulation of controlled hybrid systems,”
IEEE Transactions on Automatic Control, vol. 60, no. 9, pp. 2307–
2320, 2015.

[11] E. Polak, Optimization: algorithms and consistent approximations.
Springer Science & Business Media, 2012, vol. 124.

[12] H. Schättler and U. Ledzewicz, Geometric optimal control: theory,
methods and examples. Springer Science & Business Media, 2012,
vol. 38.

[13] T. Westenbroek and S. S. Sastry, “A new solution concept and family
of relaxations for hybrid dynamical systems (extended edition),” Arxiv
Preprint., 2017.

[14] J. M. Lee, “Introduction to smooth manifolds,” Graduate Texts in
Mathematics, vol. 218, 2012.

[15] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[16] S. A. Burden, S. Revzen, and S. S. Sastry, “Model reduction near
periodic orbits of hybrid dynamical systems,” IEEE Transactions on
Automatic Control, vol. 60, no. 10, pp. 2626–2639, 2015.

[17] G. V. Smirnov, Introduction to the theory of differential inclusions.
American Mathematical Soc., 2002, vol. 41.

[18] P. R. da Silva and W. P. Nunes, “Slow–fast systems and sliding on codi-
mension 2 switching manifolds,” arXiv preprint arXiv:1808.07968,
2018.


	I Introduction
	II Mathematical Notation
	III Filippov Solutions
	IV Relaxed Filippov Systems
	V Hybrid Dynamical Systems
	V-A Hybrid Dynamical Systems
	V-B The Hybrid Quotient Space
	V-C Charting the Hybrid Quotient Space
	V-D Relaxed Hybrid Topology

	VI Hybrid Filippov Solutions
	VII Relaxed Hybrid Vector Fields
	VIII Modeling Example
	IX Conclusion and Future Work
	References

