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Abstract— In this paper, we introduce a preliminary model
for interactions in the data market. Recent research has shown
ways in which a data aggregator can design mechanisms for
users to ensure the quality of data, even in situations where
the users are effort-averse (i.e. prefer to submit lower-quality
estimates) and the data aggregator cannot observe the effort
exerted by the users (i.e. the contract suffers from the principal-
agent problem). However, we have shown that these mechanisms
often break down in more realistic models, where multiple
data aggregators are in competition. Under minor assumptions
on the properties of the statistical estimators in use by data
aggregators, we show that there is either no Nash equilibrium,
or there is an infinite number of Nash equilibrium. In the
latter case, there is a fundamental ambiguity in who bears
the burden of incentivizing different data sources. We are also
able to calculate the price of anarchy, which measures how
much social welfare is lost between the Nash equilibrium and
the social optimum, i.e. between non-cooperative strategic play
and cooperation.

I. INTRODUCTION

The proliferation of smart sensors in recent years has intro-
duced the possibility of accurately detecting and estimating
a large new class of phenomena that affect society. These
sensors, ranging from smart personal devices to more tradi-
tional purpose-built sensors, may be owned by a multitude
of sources, and can produce qualitatively different readings
which can be combined to make inferences about an event
of interest.

In turn, this has led to the advent of crowd sensing,
wherein a central data collector accrues the measurements
made by a multitude sources, using these data points to
generate a single cohesive estimate for some phenomena of
interest to the data collector. However, the quality of this
central estimate, and thus its value to the data collector,
depends fundamentally on the ability, and moreover the
willingness, of the data sources to produce accurate readings
which are relevant to the phenomena the data collector
wishes to study.

Unfortunately, there may be instances where data sources
have some aversion to providing the data collector with the
quality of estimates she desires. Take as an example, the case
where the sensor must exert significant resources to produce
an accurate reading (e.g. time or network bandwidth), or
a situation where the source views the information she
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is sharing as private, and has incentive to obfuscate the
data she shares [1], [2]. Consequently, in order to ensure
she consistently receives high quality measurements from
the data sources, the central data collector must design an
incentive mechanism which:

1) allows her to metricize the quality of the reading each
data source provides, and

2) provides incentive for the data sources to produce
readings which are considered ”high quality” under
this metric.

Given the wide range of applications and industries this
problem affects, many different compensation mechanisms
have been proposed to promote the production of high quality
readings from a collection of data sources. An overview of
such mechanisms is given in [3].

The contribution of this section can be seen as an extension
of [4], in which the authors design a general payment
mechanism, by which a central data collector may induce
each data source in the marketplace to exert precisely the
level of effort in collecting data that the central data buyer
desires. The goal of the data buyer in this case is to obtain
a high quality estimator for some phenomena using the
readings from the data sources, while reducing the payments
needed to incentivize the necessary exertion of effort from
the sensors. Several other papers [5], [6] further investigate
mechanisms of this sort, proposing several extensions.

However, it has yet to be studied how such mechanisms
perform in situations where more than one central data
buyer wishes to purchase readings from data sources in the
marketplace. A number of important questions arise when
such data markets are considered. If the central data buyers
are competing companies, will they permit data sources to
also sell information to their competitors? If the data buyers
do purchase readings from the same set of data sources, who
will foot the bill to incentivize the effort the data sources
exert? Will the data buyers who provide larger payments to
the data sources be compensated with higher quality readings
than their competitors?

Most significantly, this section demonstrates that if all the
data buyers design compensation schemes as proposed in
[4], each of the data buyers will receive the same quality
of reading from a particular data source, regardless of how
much each data buyer personally compensates the data
source for her effort. This leads to conflicting objectives for
each of the data buyers on several fronts. If a data buyer
wishes to induce a data source to exert a high level of effort,
she must reconcile the fact that her competitors will also
receive a high quality reading from this data source. Even in
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the case where the data buyers care little about the success
of the other buyers in the marketplace, each data buyer still
wants to incentivize the data sources to produce high quality
readings, but wants to force the other data buyers to offer
the lion’s share of the necessary compensation.

In this section, we analyze the competitive outcomes that
arise in such a marketplace by formulating a game between
the buyers wherein they

1) compete by designing pricing mechanisms to affect the
behavior of the data sources, and

2) design these mechanisms so as meet the personal
objectives enumerated above.

We derive conditions for the existence of Nash Equilib-
ria in this game when a particular form is assumed, and
analyze the efficiency and equity of these outcomes. We
demonstrate through both analytical and numerical exercises
that the outcomes of these games are often highly inefficient
from a social standpoint, which motivates future work to
design incentive mechanisms which more effectively handle
competition between data buyers.

The rest of this paper proceeds as follows. In Section II, we
lay out explicit mathematical structures for the data markets,
strategic data sources, strategic data buyers, and the class of
contracts we will consider between the sources and buyers.
In Section III, we analyze the game that forms between
the buyers in the data market, and demonstrate that the
outcome of this game is in many cases socially inefficient,
and often times. Section IV provides a numerical example
which highlights the issues presented in Section III. And
finally, Section V prescribes an agenda for future work, with
the aim of developing more refined incentive mechanism
which do not suffer from the same shortcomings in the
competitive setting.

II. MATHEMATICAL FORMULATION

In this section we formulate our model for data markets.
We first present our model for strategic data sources, and
then strategic buyers who issue incentives to strategic data
sources. Based on recent research [4], we use incentives with
a particular payment structure. Then, we define our overall
game, as well as a generalized Nash equilibrium for this
game.

A. Data market

At a high level, a data market consists of a set S =
{1, ..., N} of strategic data sources, and a set B = {1, ...,M}
of strategic data buyers. Each data source i is equipped to
generate an estimate of the function f : D → R at some data
point xi ∈ D, and each data buyer j ∈ B wishes to use these
readings to generate a personal estimator of f , which we will
denote f̂ j . Each buyer bj is willing to form a contract with
each data source i ∈ S, which monetarily compensates i for
the readings she produces, and we assume it is under the
purview of j to define the structure of this contract.

One may think of D as a set of features or events the
data buyers are capable of observing, in order to make
a prediction about some phenomena. The value returned

by the mapping f encapsulates the relationship between
the observable features and the outcome of interest. We
further assume that each of the data sources and buyers acts
strategically; that is, each of these agents acts to maximize
some expected personal return from her transactions in this
marketplace. The following two subsections of the document
provide an explicit mathematical formulation describing the
behavior of the data sources and data buyers. The basis for
these definitions comes directly from [4].

B. Strategic data sources

In this subsection, we define our model for strategic data
sources. Intuitively, data sources provide data samples (x, y)
whose variance depends on their effort. Thus, the more
effort exerted, the better the statistical estimation for any
data buyer who receives the data. Additionally, we assume
the data sources are effort-averse, i.e. all else equal, they
prefer to exert minimal effort. Furthermore, the buyer has
no direct way to verify the amount of effort exerted by the
data source. Thus, we have an issue commonly referred to
as moral hazard.

More formally, all data sources share some function f :
D → R, where f is the function which data buyers wish to
estimate. One may think of D as a set of features or events
the data buyers are capable of observing, in order to make a
prediction about some phenomena. The value returned by
the mapping f encapsulates the relationship between the
observable features and the outcome of interest.

Each data source i has their own feature xi ∈ D and their
own cost-of-effort function σ2

i : R→ R+. When data source
i exerts effort ei ∈ R, they produce an estimate of the form:

yi(ei) = f(xi) + εi(ei) εi(ei) ∼ N(0, σ2
i (ei))

Both xi and σ2
i are common knowledge, but the effort ei is

private, as well as the the value yi(ei) produced. We shall
design contracts such that the data source i is incentivized
to exert the ‘correct’ amount of effort (to be defined), and
report yi truthfully.

Data source i will receive a payment from each buyer for
their data. For buyer j, let this payment, potentially random,
be denoted pji . We assume that the data source has a utility
function of the following form, should they opt-in:

E

∑
j∈B

pji

− ei (1)

If they opt-out, they will receive utility 0.
Note that this assumes that the data sources are risk-

neutral, effort-averse, and must opt-in ex-ante. Additionally,
we assume the effort ei can be normalized to be comparable
to the payments.

Throughout the rest of this paper, we shall often omit the
argument ei when context makes it evident.

C. Strategic data buyers

A strategic data buyer j ∈ B is an agent who wishes
to construct the best estimator f̂ j for a function f . She



optimizes a loss function across a class of estimators, which
the data buyer is free to select. In general, different buyers
need not fit models of the same type; for example, one
data buyer may choose to generate her estimator via linear
regression, while another data buyer constructs his estimator
by fitting the data to a polynomial model of higher degree.
Differences in the type of estimator data buyers use may be
used to encapsulate competitive advantages one data buyer
has over another. For a more thorough review of the technical
requirements of these estimators, see [4].

Additionally, each data buyer j has a distribution Fj across
D, which denotes how much they value an accurate estimate
at various points in D.

In particular, let f̂ j
(~x, ~yj)

denote the estimator that buyer j
constructs, based on the location of the data sources, ~x, and
the reports she receives from the data sources, ~yj . (Here,
~x = (x1, . . . , xN ) and similarly ~yj is the vector of y values
reported to buyer j.)

Beyond any intrinsic utility buyer j experiences from
increasing the quality of her estimator, j also wishes to
construct an estimator that is better than the estimator
constructed by her competitors, the other members of B.

Each data buyer j commits to a payment function pji to
each data source i ∈ S, where pji : DN × RN → R may
depend not only on the reading reported by data source i,
but also the readings reported by the other members of S,
with consideration given to the location of the data sources.
In particular, buyer j constructs her various contracts with
the data sources so as to minimize:

Jj(~pj , ~p−j) = E

[(
f̂ j
~x, ~yj

(x∗)− f(x∗)
)2
−

∑
k∈−j

δjk

(
f̂k
~x, ~yk

(x∗)− f(x∗)
)2

+ ηj
∑
i∈S

pji (~x,
~yj)

] (2)

The expectation in (2) is taken across x∗ ∼ Fj as well as
the randomness in the reported data ~yk for k ∈ B. (Recall
that Fj weighs the importance data buyer j places on an
an accurate estimator about different points x∗ ∈ D.) Here,
as per typical game theory notation, we will let −i denote
S\{i} and −j denote B\{j}, and when −i or −j is used as
a subscript, this denotes everyone else’s variables, e.g. ~p−j

denotes the vector of payment plans of all the data buyers
that are not j.

Here, δjk ∈ [0, 1] parameterizes the level of competition
between buyers j and k, and we assume this competition is
symmetric so δjk = δkj . When δjk = 0, j is indifferent to the
success of k, and competes with k only insofar as trying
to determine who will pay to incentive the data sources.
Meanwhile, δjk = 1 denotes a situation akin to a zero-sum
game between data buyers j and k.

The parameter ηj > 0 denotes a conversion between dollar
amounts allocated by the payment functions and the utility
generated by the quality of the various estimators that are
constructed.

In order for the objective expressed in (2) to be well
defined, we assume that buyer j chooses to construct an

estimator for which there exists a function gj such that, for
all distributions F j over D, ~x, and ~σ2 ∈ RN :

gj(~x, Fj , ~σ2) = E
[(
f̂ j
~x, ~yj

(x∗)− f(x∗)
)2]

(3)

Here the ~yj have variance ~σ2.
Finally, we assume that buyer j has knowledge of what

class of estimator each of the other data buyers plans to use.1

The data buyers are interested in offering payment con-
tracts to data sources. These contracts must be designed such
that, for each data source i, when i selects her effort ei to
maximize to (1), given the payment contracts from all of the
other data buyers:

E

∑
j∈B

pji (
~yj(ei))

− ei ≥ 0 (4)

E
[
pji (

~yj(ei))
]
≥ 0 (5)

Note that (4) is an ex-ante constraint for data source i that i
receives non-negative payoff in expectation. This depends on
the payments of the other data buyers. The second is an ex-
ante constraint that data source i never opts into any contract
with negative payments.

We model the resulting competition between the data
buyers, subject to these coupled constraints, as a generalized
Nash equilibrium problem (GNEP) [7].

Definition 1. Each player j from a finite set of players B
aims to solve an optimization problem given by:

BR(p−j) = arg min
pj
{Jj(pj , p−j)|pj ∈Mj(p−j)} (6)

Mj(p−j) is called the feasible set for player j, which
depends on the actions taken by the other players −j. A
vector p = (p1, p2, . . . pM ) is called a (generalized) Nash
equilibrium (GNE) if pj = BR(p−j) for all j ∈ B, i.e. the
pj are simultaneously solutions to each players optimization
(6).

Having laid out the general formulation for this problem,
in the final portion of this paper we lay out the form of the
payment contracts that we consider between the buyers and
sellers.

D. Structure of payment contracts

In [4] the particular case where |B| = 1 is analyzed, and
no competition between buyers of data must be considered.
Their work considers payment plans from the single buyer
to each data source i of the form:

pi(~x, ~y) = ci − di
(
yi − f̂(~x, ~yj)−i(xi)

)2
, (7)

where f̂(~x,~y)−i(xi), is the optimal estimate for f(xi) that the
data buyer can construct from the readings reported by the

1This is a heavy-handed assumption, given that competing data buyers
are unlikely to inform their competitors how they intend to process the
data supplied by the sources. However, this is keeping with the goal of the
paper, as we shall demonstrate that even when there is complete information
between the buyers, inefficiencies still arise in the data market.



data sources other than source i, and ci ≥ 0, di ≥ 0 are
scalars to be chosen strategically by the buyer. The authors
of [4] demonstrate an algorithm for selecting ci and di which
allows the buyer to:

1) precisely incentive data source i to exert any level of
effort ēi that the buyer desires (the authors can make
ēi a dominant strategy for data source i), and

2) precisely compensate data source i for her effort
(Epi(yi(ēi), ~y−i(~̄e−i)) = ei, making the contract
tightly satisfy individual rationality constraints).

Our goal is to study how pricing schemes of this form
perform in the more general case where |B| > 1, and
competition between multiple data buyers becomes a critical
consideration. In particular, we assume the following form
for each of the incentive mechanisms offered in the data
market.

Assumption 1. Consider a data buyer j and data source i.
It is assumed that j offers i a payment function of the form

pji (~x, ~y) = cji − d
j
i

(
yi − f̂ j(~x,~y)−i(xi)

)2
, (8)

in exchange for knowledge of yi,where cji , d
j
i ≥ 0 are

parameters that the buyer j is free to choose.

Note that these payments do not directly depend on the
level of effort that any of the data sources exert, since the data
buyers do not have a means to directly observe these values.
The payments only depend on the data reported to them,
and can be calculated by data buyers. Having defined the
necessary structures for the data markets we wish to study,
we are now ready to study the competitive equilibria that
arise in these marketplaces.

First, we note that for any data source i, due to the form
of the payment contract, they will report the same value to
all data buyers.

Proposition 1. Fix any data source i. Pick any vector of
variances ~σ2 (one variance for each data buyer), and let e =
max {ẽ : σ2

i (ẽ) = ( ~σ2)j}, i.e. e is the minimum amount of
effort for data source i to generate measurements of variance
~σ2. Then, data source i has higher payoff, defined by (1), by
choosing variances σ2

i (e) for all j, than the payoff earned
from providing each buyer j with data of variance ( ~σ2)j .

In other words, since the payment contract from each data
buyer j is increasing (in expectation) with respect to effort,
data source i will never have incentive to ‘add noise’ to a
measurement once the effort has been exerted. Thus, for the
rest of this paper, we shall write ~y to denote the measurement
reported to all data sources j.

III. RESULTS

In this section, we analyze the behavior we can expect
from each of the agents in the market place, by considering
the game that forms between the members of B as they select
the parameters in the contracts they offer to the data sources.

Adopting standard game-theoretic short-hand notion, we
denote the set of pricing parameters buyer k selects by

(ck, dk) , and we denote the choice of the pricing parameters
of the other members of B by (c−k, d−k). From now on, we
use the index k to single out a specific buyer, the index q to
single out a data source, the index j to sum over a collection
of buyers, and the index i (and sometimes l) to sum over a
collection of sources.

We begin our analysis by determining under what condi-
tions the data sources will accept the collection of contracts
offered to them by the data buyers. Recall that data source q
will accept all of the contracts offered by the data sources if
and only if the ex-ante total payments are non-negative (4)
and each data buyer’s payment is non-negative ex-ante (5).

Let δx denote the probability measure that puts mass 1 at
point x. Then, we may simplify (4) for a fixed q by noting
that:

E

∑
j∈B

pjq(~x, ~y)

 =
∑
j∈B

cjq−E
∑
j∈B

djq

(
yq − f̂ j~x−q,~y−q (xq)

)2
=

∑
j∈B

cjq −
∑
j∈B

djq

(
σ2
q (eq) + gj(x̄−q, δxq ,

~σ2−q)
)

Then, (4) holds if and only if:∑
j∈B

cjq −
∑
j∈B

djq

(
σ2
q (eq) + gj(x̄−q, δxq ,

~σ2−q)
)
≥ eq (9)

Similarly, (5) holds if and only if:

cjq ≥ djq
(
σ2
q (eq) + gj(x̄−q, δxq ,

~σ2−q)
)

(10)

As our goal is to find situations where the buyers receive
data from each of the data sources, we shall include equations
(9) and (10) as constraints in the game between data buyers.
Indeed, given a choice of (c−k, d−k), the objective of buyer
k is to optimize the following problem:

min
ck,dk

Jk((ck, dk), (c−k, d−k)) (11)

s.t. E
[∑

j∈B p
j
i (~x, ~y(~e∗))

]
− e∗i ≥ 0 (12)

e∗i = arg maxei E
[∑

j∈B p
j
i (~x, ~y(~e∗))

]
− ei (13)

E
[
pki (~x, ~y(~e))

]
≥ 0 (14)

cki ≥ 0, dki ≥ 0 (15)

Each constraint holds for all i ∈ S. Recall that Jk was
defined in (2). Note that [4] showed that the payments induce
dominant strategies, so (13) is an optimization that does not
depend on e−i.

In general, this may be a computationally difficult problem
for bk to solve. For illustrative purposes, for the rest of this
paper, we will assume specific forms for the estimators the
buyers employ and the σ functions which define the data
sources. We first assume:

Assumption 2. For each data source i, σi(ei) is character-
ized by the the constant αi > 0 and of the form:

σi(ei) = exp(−αiei) (16)

Note that this implies that σ is convex, strictly decreasing
and always positive, which are all desirable properties in



our context. Furthermore, note that this is the form of the
standard deviation, not the variance.

We next determine the level of effort data sources will
exert given the pricing parameters set by the data buyers.
Fix a data source q and taking the derivative of (1) with
respect to eq , we obtain:

−2

∑
j∈B

djq

σi(eq)
d

deq
σq(eq)− 1 =

2

∑
j∈B

djq

αq exp(−2αqeq)− 1

Setting this derivative equal to 0 yields:

e∗q =
ln
(

2
(∑

j∈B d
j
q

)
αq

)
2αq

(17)

This is the optimum effort selection for data source q. We
can also compute how this optimal point varies with dji :

∂

∂djq
e∗q =

1

2
(∑

j∈B d
j
q

)
αq

Also we can easily calculate the optimum variance:

σ2
q (e∗q) =

1

2
(∑

j∈B d
j
q

)
αq

(18)

Assumption 3. (Separable estimators) For each buyer k ∈
B, the estimator for f that buyer k employs, f̂k, is separable.
In other words, there exists a function hk such that:

gk(~x, F, ~σ2) =
∑
i∈S

hk(xi, ~x, F )σ2
i

Furthermore, we assume that h ≥ 0.

Note that linear regression, polynomial regression and
finite-kernel regression all produce separable estimators. Ap-
plying Assumption 3 for the estimators, we may rewrite the
loss function for buyer k as:

Jk((ck, dk), (c−k, d−k)) =
∑
i∈S

hk(xi, ~x, Fk)σ2
i (e∗i )−∑

j∈−k

δkj
∑
i∈S

hj(xi, ~x, Fj)σ
2
i (e∗i ) +

ηk
∑
i∈S

(
cki − dki

[
σ2
i (e∗i ) +

∑
l∈−i

hk(xl, ~x−i, δxi)σ
2
l (e∗l )

])

Recall that each xi is fixed and common knowledge; thus,
we can replace each of the above evaluations of the h
functions with constants. Define βji = hj(xi, ~x, Fj), ξji,l =

hj(xl, ~x−i, δxi) for i 6= l and ξji,i = 1. Note that ξ ≥ 0.

Then, this becomes:

Jk((ck, dk), (c−k, d−k)) =
∑
i∈S

βki σ
2
i (e∗i )−∑

j∈−k

δkj
∑
i∈S

βji σ
2
i (e∗i ) +

ηk
∑
i∈S

(
cki − dki

[
σ2
i (e∗i ) +

∑
l∈−i

ξki,lσ
2
l (e∗l )

])
=

∑
i∈S

βki − ∑
j∈−k

δkj β
j
i

σ2
i (e∗i ) +

ηk
∑
i∈S

(
cki − dki

[
σ2
i (e∗i ) +

∑
l∈−i

ξki,lσ
2
l (e∗l )

])

In efforts towards succinctness, let γki = βki −
∑
j∈−k δ

k
j β

j
i .

We will now plug in the expression for σ2
i (e∗i ) in (18),

yielding:

Jk((ck, dk), (c−k, d−k)) =
∑
i∈S

γki σ
2
i (e∗i ) +

ηk
∑
i∈S

(
cki − dki

[
σ2
i (e∗i ) +

∑
l∈−i

ξki,lσ
2
l (e∗l )

])
=

∑
i∈S

γki

2
(∑

j∈B d
j
i

)
αi

+

ηk
∑
i∈S

(
cki − dki

[
1

2
(∑

j∈B d
j
i

)
αi

+

∑
l∈−i

ξki,l

2
(∑

j∈B d
j
l

)
αl

])
=

∑
i∈S

γki

2
(∑

j∈B d
j
i

)
αi

+

ηk
∑
i∈S

cki − dki
∑
l∈S

ξki,l

2
(∑

j∈B d
j
l

)
αl


(Note here we joyfully take advantage of our convention that
ξki,i = 1.)

Finally, similar reasoning lets us write for any data source
q and data buyer k:

E
[
pkq (~x, ~y)

]
= ckq − dkq

(
σ2
q (eq) + gk(x̄−q, δxq ,

~σ2−q)
)

=

ckq − dkq

σ2
q (eq) +

∑
i∈−q

hk(xi, ~x−q, δxi)σ
2
i (ei)

 =

ckq − dkq

(∑
i∈S

ξkq,iσ
2
i (ei)

)
At optimum effort levels, this becomes:

E
[
pkq (~x, ~y)

]
= ckq − dkq

(∑
i∈S

ξkq,iσ
2
i (e∗i )

)
=



ckq − dkq

∑
i∈S

ξkq,i

2
(∑

j∈B d
j
i

)
αi


Also using the expression for e∗i given in (17), buyer k

has the following optimization problem:

min
ck,dk

∑
i∈S

γki
2dtotal
i

αi
+ ηk

∑
i∈S

(
cki − d

k
i

[∑
l∈S

ξki,l

2dtotal
l

αl

])
(19)

s.t.
∑
j∈B

[
cji − d

j
i

(∑
l∈S

ξ
j
i,l

2dtotal
l

αl

)]
−

ln
(
2dtotali αi

)
2αi

≥ 0 (20)

cki − d
k
i

(∑
l∈S

ξki,l

2dtotal
l

αl

)
≥ 0 (21)

dtotali =
∑
j∈B d

j
i (22)

cki ≥ 0, dki ≥ 0 (23)

Every constraint above holds for all i ∈ S. Here, (22)
is a definitional, rather than binding, constraint. Also, note
that without loss of generality, we can take ηk = 1, by
normalizing the γki accordingly. Additionally, we can remove
the constraint cki ≥ 0, as it is redundant in light of the

constraint cki − dki
(∑

l∈S
ξki,l

2dtotall αl

)
≥ 0, since ξ ≥ 0 and

d ≥ 0.
This leads to the following result.

Theorem 1. Consider the game where each buyer’s objective
is to solve the optimization in (19), and assume γji ≥ 0 for
all i ∈ S, j ∈ B. Then there are either an infinite number of
generalized Nash equilibria, or there is no generalized Nash
equilibrium.

Furthermore, in the case where there are an infinite
number of generalized Nash equilibria, there is a unique
collection of d parameters, in the sense that if (~c, ~d) and
(~c′, ~d′) are both generalized Nash equilibria, then ~d = ~d′.
Additionally, the c parameters lie in the convex polytope
defined by the following constraints:∑

j∈B
cji =

∑
j∈B

dji

(∑
l∈S

ξji,l
2dtotall αl

)
+

ln
(
2dtotali αi

)
2αi

cki ≥ dki

(∑
l∈S

ξki,l
2dtotall αl

)
The effort exerted by each data source is the same in each
generalized Nash equilibrium.

Before proving this theorem, we discuss the assumption
that γji ≥ 0. This implies that, for each data buyer, the
penalty for other data buyer’s successful estimation does
not outweigh the benefit of having a good estimator. This
assumption means that no data buyer will have incentive to
drive the variance of one data source up towards infinity.

We prove the following useful lemma, and then prove our
theorem.

Lemma 1. Suppose (~c, ~d) is a GNE for the game defined by
(19). The following equality holds for all i and k:

cki =
∑
j∈B

dji

(∑
l∈S

ξji,l
2dtotall αl

)
+

ln
(
2dtotali αi

)
2αi

−
∑
j∈−k

cji

In other words, (20) is always tight in equilibrium.

Proof. To prove this, note that, by the cost function of buyer
k, cki will always be chosen such that at least one of (20)
and (21) is tight. Suppose (21) is exclusively active, i.e.

cki − dki

(∑
l∈S

ξki,l
2dtotall αl

)
= 0

cki >
∑
j∈B

dji

(∑
l∈S

ξji,l
2dtotall αl

)
+

ln
(
2dtotali αi

)
2αi

−
∑
j∈−k

cji

(24)
Note that (24) is the same constraint for every data buyer.
In other words, if it is loose for k, it is loose for all other
j. Thus, some other buyer j can reduce their cji and lower
their cost, and thus (~c, ~d) cannot be an equilibrium.

This argument does fall apart in one situation, however.
No buyer can reduce their cost just by modifying c if (21)
is tight for all buyers k, i.e. for all k:

cki − dki

(∑
l∈S

ξki,l
2dtotall αl

)
= 0

In this case, (20), which we assumed held loosely, becomes
2dtotali αi < 1. Let buyer k increase dki such that 2dtotali αi =
1, and then choose a new ck such that (21) holds tightly, i.e.

ck = dki

(∑
l∈S

ξki,l
2dtotall αl

)
. Note that this decreases their

cost: ∑
i∈S

γki
2dtotali αi

>
∑
i∈S

γki

(This uses the fact that, since (21) holds for all buyers j, the
second term disappears.) Additionally, all the constraints of
the original optimization are still satisfied, so (cki , d

k
i ) was

not an optimizer for buyer k.
This concludes our proof.

Proof. (Theorem 1) We invoke Lemma 1 and substitute this
into the objective function, (19), for buyer k. Let:

J
(
~c, ~d
)

=
∑
i∈S

(
γki

2dtotali αi
+

∑
j∈−k

(
dji

(∑
l∈S

ξji,l
2dtotall αl

)
− cji

)
+

ln
(
2dtotali αi

)
2αi

)
This yields:

min
ck,dk

J
(
~c, ~d
)

subject to cki − dki
(∑

l∈S
ξki,l

2dtotall αl

)
≥ 0

dtotali =
∑
j∈B d

j
i

dki ≥ 0

We quickly manipulate the cost function a little to a more
desirable form: ∑

i∈S

(
γki

2dtotali αi
+



∑
j∈−k

(
dji

(∑
l∈S

ξji,l
2dtotall αl

)
− cji

)
+

ln
(
2dtotali αi

)
2αi

)
=

∑
i∈S

(
γki

2dtotali αi
+

ln
(
2dtotali αi

)
2αi

)
+

∑
i∈S

∑
j∈−k

∑
l∈S

dji ξ
j
i,l

2dtotall αl
−
∑
i∈S

∑
j∈−k

cji =

∑
i∈S

(
γki

2dtotali αi
+

ln
(
2dtotali αi

)
2αi

)
+

∑
i∈S

∑
j∈−k

∑
l∈S

djl ξ
j
l,i

2dtotali αi
−
∑
i∈S

∑
j∈−k

cji =

∑
i∈S

(
γki

2dtotali αi
+

∑
j∈−k

(∑
l∈S

djl ξ
j
l,i

2dtotali αi
− cji

)
+

ln
(
2dtotali αi

)
2αi

)

Note the index swap on the ξ terms in the second equality.
Then define:

Jki (dki , c
−k, d−k) =

γki
2dtotali αi

+

∑
j∈−k

(∑
l∈S

djl ξ
j
l,i

2dtotali αi
− cji

)
+

ln
(
2dtotali αi

)
2αi

=

γki +
∑
j∈−k

∑
l∈S d

j
l ξ
j
l,i

2dtotali αi
−
∑
j∈−k

cji +
ln
(
2dtotali αi

)
2αi

Thus, the overall optimization can again be re-written:

min
ck,dk

∑
i∈S J

k
i (dki , c

−k, d−k)

subject to cki − dki
(∑

l∈S
ξki,l

2dtotall αl

)
≥ 0

dtotali =
∑
j∈B d

j
i

dki ≥ 0

We differentiate the cost with respect to dkq :

∂

∂dkq

∑
i∈S

Jki (dki , c
−k, d−k) =

∂

∂dkq
Jkq (dkq , c

−k, d−k) =

−
γkq +

∑
j∈−k

∑
l∈S d

j
l ξ
j
l,q

2(dtotalq )2αq
+

1

2dtotalq αq
=

−γkq −
∑
j∈−k

∑
l∈S d

j
l ξ
j
l,q + dtotalq

2(dtotalq )2αq
=

−γkq −
∑
j∈−k

∑
l∈−q d

j
l ξ
j
l,q + dkq

2(dtotalq )2αq

Note that we use the fact that ξjq,q = 1 for all j. It is easy
to see that:

∂

∂dkq
J
k
q (d

k
q , c
−k
, d
−k

)


< 0 if 0 ≤ dkq < γkq +

∑
j∈−k

∑
l∈−q d

j
l ξ
j
l,q

= 0 if dkq = γkq +
∑
j∈−k

∑
l∈−q d

j
l ξ
j
l,q

> 0 if dkq > γkq +
∑
j∈−k

∑
l∈−q d

j
l ξ
j
l,q

Thus, the maximizing dkq is given by:

dkq = γkq +
∑
j∈−k

∑
l∈−q

djl ξ
j
l,q (25)

Performing this analysis for all combinations of q ∈ S and
k ∈ B yields a system of M × N equations with M × N
unknowns, of the form (25).

As we have before, let ~d denote a column vector with
entries dji for each i ∈ S and j ∈ B. Similarly, let ~γ denote
a column vector containing all the terms of the form γji .
Then, we may represent this system of equations with the
following matrix equation:

~d = A~d+ ~γ (26)

Here, A is a non-negative matrix whose entries are the values
of the various ξ parameters at the appropriate places, such
that (26) expresses the set of equality constraints defined by
(25) for all q ∈ S and k ∈ B. To find an GNE of this game,
it suffices to find a solution to (26) such that dji ≥ 0 for all
i and j.

Systems of equations of this form are well studied in the
economics literature, as they are of the form specified by the
celebrated Leontief input-output model. It has been shown
that such systems of equations have a non-negative solution
if and only if ρ(A) < 1, where ρ(A) is the spectral radius of
A [8]. Moreover, if such a solution exists, it must be unique.

Thus, if ρ(A) < 1, inversion of this A matrix yields the
equilibrium ~d, and, by Lemma 1, we can pick any ~c that
satisfies:∑

j∈−B
cji =

∑
j∈B

dji

(∑
l∈S

ξji,l
2dtotall αl

)
+

ln
(
2dtotali αi

)
2αi

cki ≥ dki

(∑
l∈S

ξki,l
2dtotall αl

)
If ρ(A) ≥ 1, there will not exist a non-negative solution

and there is no point (~c, ~d) that simultaneously optimizes
(19) for all k. It follows that there is either a unique ~d that
will constitute a Nash solution for the game, which produces
a convex polytope of potential GNE, or there this no solution
to the game, as desired.

It is interesting to note that the existence of GNE depends
solely on the value of the ξ parameters; it does not depend
on the magnitude of the γ parameters. This implies that the
existence or non-existence of GNE in this game is simply
an artifact of the incentive mechanisms we have chosen to
analyze, and does not depend on whether or not there are
solutions that are beneficial to all parties involved. Note
that we chose this incentive mechanism based on several
desirable properties in the single-buyer case; whether or not
there exist mechanisms that extend to multi-buyer games in



a fashion that provides good efficiency properties is an open
problem that we are currently investigating. In Section IV,
we calculate the ξ parameters for a specific example, and see
how equilibrium solutions in these marketplaces collapse as
the characteristics are varied.

Additionally, note that, in the case where there is a
continuum of GNE, the effort exerted by data sources and ~d
parameters are the same across all equilibria. The ambiguity
arises in the ~c parameters. In other words, the ambiguity
arises in determining which data buyers will pay to ensure
that each data source’s total compensation covers the cost
of their effort. In the extreme case, it is possible for one
firm to pay for the entirety of the expected compensation
offered to the data sources, while the the firms pay nothing
on expectation. That is, for some k ∈ B,

∑
i∈S p

k
i (~x, ~y) =∑

i∈S e
∗
i , and for all j 6= k,

∑
i∈S p

j
i (~x, ~y) = 0. In Section V

we discuss possible mechanisms to alleviate the disparity that
may arise in these situations.

We next turn to analyzing the total utility experienced in
the marketplace for a given outcome of the game. We begin
with the following definition.

Definition 2. (Ex-ante social loss of the data market) Sup-
pose that ηj = 1 for all buyers j. Let ~e be the vector denoting
the level of effort the data sources exert. Then, we define the
ex-ante social loss the marketplace to be the sum of the utility
functions of all the data buyers and data sources:

L(~e) =
∑
j∈B

(
E

[(
f̂ j
~x, ~yj

(x∗)− f(x∗)
)2
−

∑
k∈−j

δjk

(
f̂k
~x, ~yk

(x∗)− f(x∗)
)2 ])

+
∑
i∈S

ei

Note that this sum does not include any of the payments
made in the marketplace, as they are simply lossless transfers
of wealth. We require the additionally assumption that ηj = 1
for all buyers j to ensure that these transfers of wealth are
lossless from a utility perspective, i.e. the buyers and sources
value the payment equally. This assumption allows us to
isolate the social loss due to the mechanism, and ignore any
losses due to differential preferences in payment currency.

Theorem 2. Suppose that Assumptions 2 and 3 hold. Fur-
ther, assume that γji > 0, for all i ∈ S and j ∈ B, and that
ξji,l > 0 for some i, l ∈ S, j ∈ B. Finally, suppose GNE
solutions exist for the game, and let ~e∗ denote the unique
level of effort exerted by the data sources across each of
these GNE solutions, as stipulated by Theorem 1. Then, there
exists ~̂e ∈ RN such that L

(
~̂e
)
< L

(
~e∗
)
. Furthermore, the

socially optimal levels of effort, ~̂e, are always less than the
induced levels of effort at equilibrium ~e∗.

Proof. We begin by calculating solving for the value of ~̂e
which minimizes the value of L

(
~̂e
)

. Invoking Assumption 3
and our definition of γ, we may write:

L
(
~̂e
)

=
∑
i∈S

∑
j∈B

γji σ
2
i (êi) +

∑
i∈S

êi (27)

Taking the derivative with respect to êq and repeating
our analysis with Assumption 2, and setting the resulting
equation to zero we obtain:

−2αq

∑
j∈B

γjq

 exp(−2αq êq) + 1 = 0

We can re-arrange this to yield:

êq =
ln(2αq

∑
j∈B γ

j
q)

2αq
(28)

Note, that L is strictly convex with respect to êq , so
choosing the entries of ~̂e according to equation (28) must
produce the unique minimizer of L

(
~̂e
)

.
Next we compare this to the level of effort the sources

produce in the GNE of the game between the buyers. By
(25), we obtain that in the GNE for all i ∈ S and k ∈ B:

dki = γki +
∑
j∈−k

∑
l∈−i

djl ξ
j
l,i ≥ γ

k
i > 0

Furthermore, since there exists at least one ξ > 0, we know
that dkq > γkq for some data source q and buyer k. It follows
that, for this particular q:∑

j∈B
djq >

∑
j∈B

γjq

Thus, by (17), we see that

e∗q =
ln(2αq

∑
j∈B d

j
q)

2αq
>

ln(2αq
∑
j∈B γ

j
q)

2αq
= êq. (29)

Thus the theorem is proved, since it must be the case that
L
(
~̂e
)
< L

(
~e∗
)

since we chose ~̂e to be the unique minimizer
of L.

Theorem 2 shows that there is always some social loss, ex-
ante, from a Nash solution compared to the social optimum.
Furthermore, the proof provides a way to identify where
this loss is incurred, and how to calculate how much is
lost. Note that the social welfare is always lost because
the effort induced in equilibrium is higher than is socially
optimal. This captures the intuition that each data buyer has
a negative externality: they wish to improve their estimates
without considering how their improved estimates hurt other
data buyers.

The proof itself also provides strong intuition on the
ξ parameters between buyers. Loosely speaking, these ξ
parameters can be thought of as a measure of each buyer’s
‘market power’, in the sense that it quantifies how much one
buyer can influence the payment contracts of other buyers
in the data market to his advantage. As an extremal case,
when ξji,l = 0 for all i, l ∈ S and j ∈ B, there is no
coupling between the payments the buyers make, and the
social optimum coincides with the Nash solution.



IV. EXAMPLE: BETWEEN TWO FIRMS

In this section, we present an example which demonstrates
how a data market may collapse as the parameters of the
system are varied. This example will also demonstrate how
the efficiency of the data market, in terms of the ex-ante
social loss function L, changes as the market approaches
this collapse. In particular, we consider the case where there
are two data sources (s1 and s2) and two firms acting as data
buyers (b1 and b2). Each of the data sources is capable of
estimating the function

f : [−1, 1]→ R. (30)

Let x1, x2 ∈ [−1, 1] denote the locations where s1 and s2
sample f , respectively. Assume that each of the data sources
are as defined in Assumption 2, with the characteristic
parameters α1 = α2 = 1.

Next, we assume that each of the data buyers is performing
linear regression on f , using the samples reported by the data
source. In this case [4]:

gj(~x, Fj , σ
2(~e)) = Ex∗∼Fj

[ [
x∗

1

]T
(XTX)−1XT ·

diag(σ2
1(e1), σ2

2(e2)) ·X(XTX)−1
[
x∗

1

] ]
=

γj1σ
2
1(e1) + γj2σ

2
2(e2)

In this example, we assume F1 = F2 as the uniform
distribution on the domain of f , [−1, 1]. Thus, for i ∈ {1, 2}:

γ1i = γ2i =
(x1 − x2)2/3 + (x2i − x1x2)2

(x21 + x22 − 2x1x2)2

Note that, by these assumptions, g1 = g2, and furthermore:

ξ11,2 = ξ21,2 = g(x2, δx1 , σ
2
2(e2)) =

(x1x2 + 1)2

(x22 + 1)2

ξ12,1 = ξ22,1 = g(x1, δx2 , σ
2
1(e1)) =

(x1x2 + 1)2

(x21 + 1)2

For illustrative purposes, we fix x2 = 1, and see what
happens to the data market as we vary x1 along the interval
[−1, 1].

Note that, when x1 = x2 = 1, it is no longer possible to
construct a linear estimator of f because there is insufficient
data. Thus, the example shows how the game between buyers
behaves as it becomes increasingly difficult to construct good
estimators. The ~d parameters of any Nash solution can be
found by solving:

γ11
γ21
γ12
γ22

 =


1 0 0 −ξ22,1
0 1 −ξ12,1 0
0 −ξ21,2 1 0
−ξ11,2 0 0 1


︸ ︷︷ ︸

B


d11
d21
d12
d22

 (31)

Note that this B matrix is equal to I − A as defined in the
proof. We numerically solve this system of equations for
varying values of x1 ∈ [−1, 1], and the results are shown in
Figures 1 through 4.

Figures 1 and 2, demonstrate how the γ and ξ parameters
of the game change as a function of x1. Figure 3 demon-
strates the d parameters that the buyers will offer the data
sources as x1 varies. And finally, Figure demonstrates the
price of anarchy in the data market, as a function of x1
which is given by:

L
(
~e∗
)

L
(
~̂e
)

Here, ~e∗ is the induced effort of the sensors in the Nash
solution of the game between data buyers, and ~̂e is the
socially optimal effort for data sources to exert. Further
comments in the captions of Figures 3 and 4 demonstrate
the inefficiencies that arise in this example.
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Fig. 1. This figure depicts how the various γ parameters of the system
vary as a function of x1. Note that as x1 → 1, γ diverges to infinity, which
reflects the fact that as x1 and x2 become increasingly close it becomes
more difficult to generate a linear estimator from samples at these data
points.
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Fig. 2. This figure depicts how the various ξ parameters vary as a function
of x1. As all of the ξ parameters converge to a value of 1 as x1 → 1, the
matrix B in equation (31) becomes singular, causing the breakdown of
solutions for the d parameters, as is depicted in Figure 3.

V. CLOSING REMARKS

We’ve analyzed the game that forms between a set of
data buyers when they wish to communally incentivize a
collection of strategic data sources, using a mechanism
that has been proposed in the literature. We derived, for a
particular form of the game, conditions for the existence of
GNE, and demonstrated that these solutions are frequently
socially inefficient. This motivates future work to develop a
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Fig. 3. This figure depicts the Nash equilibrium ~d parameters for the
game between the buyers as a function of x1. Note that, as x1 → 1,
the~d parameters go off to infinity, and the Nash equilibria between the
buyers breaks down. Comparing these results to Figure 1, we see that the
~d parameters diverge much more quickly than the γ parameters, meaning
that in the Nash equilibria to the game between the two buyers becomes
increasingly inefficient as x1 → 1.
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Fig. 4. This figure depicts the price of anarchy for the marketplace as
a function of x1. When x1 = −1, the payments in the marketplace are
decoupled and the ξ parameters are all zero; in this instance the price of
anarchy is 1, and the market is perfectly efficient. However, as x1 → 1,
the price of anarchy diverges asymptotically to infinity, and the marketplace
becomes increasingly inefficient as it becomes more difficult for the buyers
to construct the estimators they desire.

richer class of incentive mechanisms which alleviate these
issues. Possible solutions include more complex pricing
mechanisms, or perhaps the addition of a trusted third party
market-maker to mediate socially beneficial transactions in
these data markets.
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