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Abstract: This paper investigates optimal control problems formulated over a class of hybrid
dynamical systems which display event-triggered discrete jumps. Due to the discontinuous
nature of the underlying dynamics, previous approaches to solving optimal control problems over
this class of systems generally rely on fixing the number and sequence of discrete jumps a priori,
or search over possible mode sequences in a combinatorial manner. Employing contributions from
the geometric theory of hybrid systems, we instead formulate a family of smooth approximate
problems formulated over a family of smooth control systems which faithfully approximate
the dynamics of the original hybrid system, in an appropriate metric. Efficient gradient-based
methods can be used to solve the smooth approximations, without specifying the sequence of
discrete transitions ahead of time. Under appropriate hypothesis, the gradients of the smooth
problem are shown to be well-conditioned and closely approximate the gradients of the non-
smooth problem (when they exist). Two cases studies demonstrate the utility of the approach,
including an in-depth application to generating a stable walking motion for a bipedal robot.

1. INTRODUCTION

Hybrid dynamical systems represent a powerful, expressive
framework for modeling physical systems which undergo
sudden changes in their dynamics due to impulsive state-
triggered events. Indeed, hybrid models have been used
extensively in application domains ranging from bipedal
robotic walking (Grizzle et al. (2014)) to power systems
(Hiskens and Pai (2000)). Given the broad applicability
of the framework, the generation of reliable numerical
algorithms solving optimal control problems over hybrid
models is of great practical interest.

Necessary and sufficient conditions for optimality in hybrid
optimal control problems have been given by considering
extensions to classic Dynamic Programming techniques
(Branicky et al. (1998), Lygeros et al. (1999), Caines
et al. (2007), Pakniyat and Caines (2017), as well as Pon-
tryagin’s Maximum Principle (Shaikh and Caines (2007),
Sussmann (1999)). However, due to the non-smooth nature
of hybrid systems, traditional approaches for systemat-
ically translating optimality conditions into reliable nu-
merical optimal control algorithms (Polak (2012)) cannot
be directly applied to this setting. Consequently, imple-
mentable derivative-based algorithms for solving hybrid
optimal control problems to local optimality generally
fix the number and sequence of discrete transitions a
priori (Hereid et al. (2018), Shaikh and Caines (2007)),
restricting the behaviors the optimization can produce.
Rather than attempting to solve this difficult problem
directly, this paper instead introduces a family of smooth
approximations to optimal control problems formulated
over a restricted, but still widely studied, class of hybrid
systems with state-triggered jumps. These relaxations are

formulated over the smooth approximations to the hybrid
dynamics introduced in Westenbroek et al. (2018) and can
be solved with standard derivative-based numerical opti-
mal control algorithms without pre-specifying a desired
sequence of discrete jumps.

Our approach is rooted in the long-building geometric the-
ory for hybrid dynamical systems first proposed in Simic
et al. (2005). Under a number of regularity assumptions
about the hybrid system – most notably that the reset
dynamics are invertible – this work demonstrated that the
trajectories of a hybrid system with state-triggered jumps
can be represented using the integral curves of a piece-
wise smooth vector field defined on a smooth manifold or
hybridfold. The underlying manifold structure is obtained
by applying a topological gluing construction which iden-
tifies each point in a guard set with its image under the
associated reset map, effectively ‘removing’ the discrete
jumps from the dynamics of the system. Homotopically
meaningful generalizations of this were considered in Ames
and Sastry (2005), which adds relaxed ‘strips’ which pre-
serve topological properties of the hybrid system under the
aforementioned gluing constructions. This has parallels to
the practical regularizations in Johansson et al. (1999),
in which added strips are used to effectively delay the
instantaneous nature of hybrid transitions. The recent
contribution Westenbroek et al. (2018) smooths the hybrid
dynamics along the added strip using techniques from
singular perturbation theory (Sotomayor (1996)) to pro-
duce a family of smooth control systems whose dynamics
uniformly approximate the original hybrid dynamics in the
state-space metric from Burden et al. (2015).

This paper advances this theory by demonstrating that
these smooth approximations retain important variational
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sudden changes in their dynamics due to impulsive state-
triggered events. Indeed, hybrid models have been used
extensively in application domains ranging from bipedal
robotic walking (Grizzle et al. (2014)) to power systems
(Hiskens and Pai (2000)). Given the broad applicability
of the framework, the generation of reliable numerical
algorithms solving optimal control problems over hybrid
models is of great practical interest.

Necessary and sufficient conditions for optimality in hybrid
optimal control problems have been given by considering
extensions to classic Dynamic Programming techniques
(Branicky et al. (1998), Lygeros et al. (1999), Caines
et al. (2007), Pakniyat and Caines (2017), as well as Pon-
tryagin’s Maximum Principle (Shaikh and Caines (2007),
Sussmann (1999)). However, due to the non-smooth nature
of hybrid systems, traditional approaches for systemat-
ically translating optimality conditions into reliable nu-
merical optimal control algorithms (Polak (2012)) cannot
be directly applied to this setting. Consequently, imple-
mentable derivative-based algorithms for solving hybrid
optimal control problems to local optimality generally
fix the number and sequence of discrete transitions a
priori (Hereid et al. (2018), Shaikh and Caines (2007)),
restricting the behaviors the optimization can produce.
Rather than attempting to solve this difficult problem
directly, this paper instead introduces a family of smooth
approximations to optimal control problems formulated
over a restricted, but still widely studied, class of hybrid
systems with state-triggered jumps. These relaxations are

formulated over the smooth approximations to the hybrid
dynamics introduced in Westenbroek et al. (2018) and can
be solved with standard derivative-based numerical opti-
mal control algorithms without pre-specifying a desired
sequence of discrete jumps.

Our approach is rooted in the long-building geometric the-
ory for hybrid dynamical systems first proposed in Simic
et al. (2005). Under a number of regularity assumptions
about the hybrid system – most notably that the reset
dynamics are invertible – this work demonstrated that the
trajectories of a hybrid system with state-triggered jumps
can be represented using the integral curves of a piece-
wise smooth vector field defined on a smooth manifold or
hybridfold. The underlying manifold structure is obtained
by applying a topological gluing construction which iden-
tifies each point in a guard set with its image under the
associated reset map, effectively ‘removing’ the discrete
jumps from the dynamics of the system. Homotopically
meaningful generalizations of this were considered in Ames
and Sastry (2005), which adds relaxed ‘strips’ which pre-
serve topological properties of the hybrid system under the
aforementioned gluing constructions. This has parallels to
the practical regularizations in Johansson et al. (1999),
in which added strips are used to effectively delay the
instantaneous nature of hybrid transitions. The recent
contribution Westenbroek et al. (2018) smooths the hybrid
dynamics along the added strip using techniques from
singular perturbation theory (Sotomayor (1996)) to pro-
duce a family of smooth control systems whose dynamics
uniformly approximate the original hybrid dynamics in the
state-space metric from Burden et al. (2015).

This paper advances this theory by demonstrating that
these smooth approximations retain important variational
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properties of the original discontinuous dynamics. In the
context of optimal control, these results show that the
gradients of our smooth approximate problems converge
to the gradients of the original hybrid optimal control
problem (when they exist) in the appropriate limit. This
result is foundational for applying well-established numeri-
cal optimal control frameworks (Polak (2012)) to provably
find approximate minimizers of the original hybrid optimal
control problem using our relaxations. We apply the ap-
proach in two in-depth numerical case studies including
the generation of stable walking motion for a bipedal
robot, by far the most complicated system to which these
folding constructions have been applied. Due to space
constraints, in this paper we focus primarily on relating
our main theoretical developments, leaving a number of
practical implementation details to the technical report
Westenbroek et al. (2021), where the interested reader
can also find formal proofs for our claims and a lengthy
discussion of avenues for future work.

Preliminaries: Given a set U ⊂ Rn, we denote the set
of square integrable functions into U with L2([0, T ] , U).
Given a map L : V → W between Hilbert spaces V,W and
u, δu ∈ V , the directional derivative of L at the point u in

the direction δu is DL(u; δu) = limλ→0+
L(u+λδu)−L(δu)

λ , if
the preceding limit exists. Given a smooth manifold with
boundary M , ∂M will denote the boundary and int(M)
will denote the interior. Given two smooth manifoldsM,N
and a smooth map G : M → N , we denote the associated
pushforward of G by DG : TM → TN .

This paper will make extensive use of the notion of ‘gluing
constructions’ or ‘quotient topologies’. A comprehensive
introduction to the topic can be forund in (Kelley, 2017,
Chapter 3), while examples of how the topic will be
applied here can be found in Simic et al. (2005) and
Westenbroek et al. (2018). Given a topological space D
and an equivalence relation ∼⊂ D×D, we let D/ ∼ denote
the corresponding set of equivalence classes. There exists
a natural quotient projection π : D → D/ ∼ taking each
point x ∈ D to its equivalence class [x] ∈ D/ ∼. Each map
R : G → D with G ⊂ D induces an equivalence relation
R∼=

{
(x, y) ∈ D ×D : x = y, x ∈ R−1(y) or y ∈ R−1(x)

}
.

To emphasize the dependence on R, we will denote the

corresponding quotient space by D/ ∼= D/(G
R∼ R(G)).

2. (RELAXED) HYBRID DYNAMICAL SYSTEMS

2.1 Hybrid Dynamical Systems

To simplify exposition, throughout the paper we will
consider hybrid systems with a single continuous domain,
guard and reset map. As discussed in Westenbroek et al.
(2021), the method naturally extends to hybrid systems
with multiple discrete modes so long as the guard sets do
not intersect and each reset map is invertible.

Definition 1. H = (D,U, f,G,R) is a hybrid dynamical
system where

(1) D ⊂ Rn is a bounded n-dimensional manifold;
(2) U ⊂ Rm is a compact set of allowable inputs;
(3) f : D×U → TRn is a smooth controlled vector field;
(4) G ⊂ ∂D is an embedded (n − 1)-dimensional sub-

manifold referred to as the guard;

Fig. 1. (left) The continuous domain D. A hybrid execu-
tions ξ undergoes a single discrete jump. (right) The
hybrid manifold and the curve x = π ◦ ξ, which is an
integral curve of F.

(5) R : G → ∂D is a smooth reset map.

Before defining the executions of H, we first discuss sev-
eral additional assumptions. The first assumption ensures
that discrete jumps are isolated, precluding pathologies
such as Zeno executions and, together with Assumption 1,
ensures that the gluing constructions we utilize lead to a
smooth manifold structure, which ensures that the under-
lying topology of the hybrid optimal control problems we
consider are well-posed.

Assumption 1. The guard and its image under the reset
do not overlap, i.e., G ∩R(G) = ∅.

Assumption 2. The reset map R is a diffeomorphism onto
its image.

Although Assumption 2 is somewhat restrictive, a number
of important hybrid models such as the bipedal robot
investigated in Section 4 satisfy this condition. The fol-
lowing Assumption ensures that trajectories do not skim
the guard set, a standard condition which supports the
uniqueness of hybrid executions:

Assumption 3. The normal component of the vector field
f along ∂D is non-zero. Moreover, f points out of D along
G and into the interior of D along R(G).

Our final Assumption is standard even for optimal control
problems defined over classical control systems:

Assumption 4. The vector field f is Lipschitz continuous.

The above assumptions ensure the uniqueness of the
following solution concept (Lygeros et al. (2003)):

Definition 2. Given (ξ0, u) ∈ D × L2([0, T ], U), the right-
continuous function ξ : [0, T ] → D is an execution of H of
length T > 0 corresponding to (ξ, u) if ξ(0) = ξ0 and{

ξ̇ = f(ξ(t), u(t)) if ξ(t−) �∈ G

ξ+(t) = R(ξ(t−)) if ξ(t−) ∈ G.
(1)

2.2 The Hybrid Manifold

The discontinuities in the executions of H make it difficult
to directly apply classical optimal control techniques to
this class of systems. Thus, we will instead work with an
equivalent representation of the hybrid dynamics wherein
the executions are represented using the continuous inte-
gral curves of a piecewise smooth controlled vector field
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proach in two in-depth numerical case studies including
the generation of stable walking motion for a bipedal
robot, by far the most complicated system to which these
folding constructions have been applied. Due to space
constraints, in this paper we focus primarily on relating
our main theoretical developments, leaving a number of
practical implementation details to the technical report
Westenbroek et al. (2021), where the interested reader
can also find formal proofs for our claims and a lengthy
discussion of avenues for future work.
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Given a map L : V → W between Hilbert spaces V,W and
u, δu ∈ V , the directional derivative of L at the point u in

the direction δu is DL(u; δu) = limλ→0+
L(u+λδu)−L(δu)

λ , if
the preceding limit exists. Given a smooth manifold with
boundary M , ∂M will denote the boundary and int(M)
will denote the interior. Given two smooth manifoldsM,N
and a smooth map G : M → N , we denote the associated
pushforward of G by DG : TM → TN .

This paper will make extensive use of the notion of ‘gluing
constructions’ or ‘quotient topologies’. A comprehensive
introduction to the topic can be forund in (Kelley, 2017,
Chapter 3), while examples of how the topic will be
applied here can be found in Simic et al. (2005) and
Westenbroek et al. (2018). Given a topological space D
and an equivalence relation ∼⊂ D×D, we let D/ ∼ denote
the corresponding set of equivalence classes. There exists
a natural quotient projection π : D → D/ ∼ taking each
point x ∈ D to its equivalence class [x] ∈ D/ ∼. Each map
R : G → D with G ⊂ D induces an equivalence relation
R∼=

{
(x, y) ∈ D ×D : x = y, x ∈ R−1(y) or y ∈ R−1(x)

}
.

To emphasize the dependence on R, we will denote the

corresponding quotient space by D/ ∼= D/(G
R∼ R(G)).
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2.1 Hybrid Dynamical Systems

To simplify exposition, throughout the paper we will
consider hybrid systems with a single continuous domain,
guard and reset map. As discussed in Westenbroek et al.
(2021), the method naturally extends to hybrid systems
with multiple discrete modes so long as the guard sets do
not intersect and each reset map is invertible.

Definition 1. H = (D,U, f,G,R) is a hybrid dynamical
system where

(1) D ⊂ Rn is a bounded n-dimensional manifold;
(2) U ⊂ Rm is a compact set of allowable inputs;
(3) f : D×U → TRn is a smooth controlled vector field;
(4) G ⊂ ∂D is an embedded (n − 1)-dimensional sub-

manifold referred to as the guard;

Fig. 1. (left) The continuous domain D. A hybrid execu-
tions ξ undergoes a single discrete jump. (right) The
hybrid manifold and the curve x = π ◦ ξ, which is an
integral curve of F.

(5) R : G → ∂D is a smooth reset map.

Before defining the executions of H, we first discuss sev-
eral additional assumptions. The first assumption ensures
that discrete jumps are isolated, precluding pathologies
such as Zeno executions and, together with Assumption 1,
ensures that the gluing constructions we utilize lead to a
smooth manifold structure, which ensures that the under-
lying topology of the hybrid optimal control problems we
consider are well-posed.

Assumption 1. The guard and its image under the reset
do not overlap, i.e., G ∩R(G) = ∅.

Assumption 2. The reset map R is a diffeomorphism onto
its image.

Although Assumption 2 is somewhat restrictive, a number
of important hybrid models such as the bipedal robot
investigated in Section 4 satisfy this condition. The fol-
lowing Assumption ensures that trajectories do not skim
the guard set, a standard condition which supports the
uniqueness of hybrid executions:

Assumption 3. The normal component of the vector field
f along ∂D is non-zero. Moreover, f points out of D along
G and into the interior of D along R(G).

Our final Assumption is standard even for optimal control
problems defined over classical control systems:

Assumption 4. The vector field f is Lipschitz continuous.

The above assumptions ensure the uniqueness of the
following solution concept (Lygeros et al. (2003)):

Definition 2. Given (ξ0, u) ∈ D × L2([0, T ], U), the right-
continuous function ξ : [0, T ] → D is an execution of H of
length T > 0 corresponding to (ξ, u) if ξ(0) = ξ0 and{

ξ̇ = f(ξ(t), u(t)) if ξ(t−) �∈ G

ξ+(t) = R(ξ(t−)) if ξ(t−) ∈ G.
(1)

2.2 The Hybrid Manifold

The discontinuities in the executions of H make it difficult
to directly apply classical optimal control techniques to
this class of systems. Thus, we will instead work with an
equivalent representation of the hybrid dynamics wherein
the executions are represented using the continuous inte-
gral curves of a piecewise smooth controlled vector field

defined on a smooth manifold. In Section 2.3 we then
construct smooth approximations to these dynamics. Our
description of these constructions is brief, as they are
covered extensively elsewhere (Ames and Sastry (2005);
Westenbroek et al. (2018); Simic et al. (2005)).

The main idea behind the re-topologization of the hybrid
system H is to ‘glue’ each point x ∈ G to its image under
the reset map, R(x) ∈ R(G). This process is depicted in
Figure 1. More formally, we define the Hybrid Manifold

M :=
D

G
R∼ R(G)

which is defined by collapsing x ∈ G and R(x) ∈ R(G)
to a single point. Letting π : D → M denote the quotient
projection taking each point x ∈ D to its equivalence class
in x ∈ M, this process amounts to identifying the surface
G with the surface R(G) to produce the single surface

Σ := π(G) = π(R(G)) ⊂ M.

As depicted in Figure 1, each execution ξ : [0, T ] → D of
H is represented by a continuous curve on M, namely,
x = π ◦ ξ : [0, T ] → M. In effect, by identifying G with
R(G) the gluing construction ‘removes’ the discrete jumps
in the executions of H.

The term ‘hybrid manifold’ or ‘hybridfold’ has been jus-
tified by a number of previous works (Simic et al. (2005);
Westenbroek et al. (2018)) which have demonstrated that
it is possible to endow M with the structure of a smooth
topological manifold by constructing a smoothly com-
patible atlas of coordinate charts {(Uα, ϕα)}α∈A for the
space. The specific form of these coordinates is not needed
for the statement of the theoretical results presented in
this manuscript, but is critical for successful numerical
implementations of the approach and is discussed further
in Westenbroek et al. (2021).

As demonstrated by Simic et al. (2005), Westenbroek
et al. (2018), the dynamics of H can be generated using
the integral curves of the piece-wise smooth vector field
F : M× Rm → TM which is defined by

F (π(x), u) = Dπ ◦ f(x, u),
for each x ∈ int(D) and u ∈ U . Intuitively, F is simply
the representation of f on the new space M. In general,
F will be discontinuous and undefined along Σ. Formally,
the relationship between H and F are encapsulated by the
following result from (Westenbroek et al. (2018)):

Lemma 1. Let ξ0 ∈ D and u ∈ L2([0, T ] , U), and let
ξ : [0, T ] → D be the corresponding hybrid execution.
Further let x : [0, T ] → M be given by x = π ◦ ξ. Then x
satisfies d

dt = F (x(t), u(t)) for almost every t ∈ [0, T ].

Specifically, given an execution ξ of H, the instances of
time when ξ undergoes a discrete jump correspond to time
instances when the curve x = π ◦ ξ crosses the surface Σ
and experiences a discontinuity in F .

2.3 Relaxed Hybrid Dynamics

While M and F provide a compact representation of
the original hybrid dynamics, the piecewise continuous
nature of F still prevents the direct application of clas-
sical derivative-based search algorithms to optimal control

Fig. 2. (left) The relaxed domain D and its components.
(right) The relaxed hybrid manifold. An integral curve
xε of F ε flows through the relaxed strip.

problems formulated over this space. Thus, we now intro-
duce a family of relaxations to M and F which result in a
smooth control system which accurately approximates the
original discontinuous dynamics. This construction, which
is depicted in Figure 2.

Formally, we construct this new space by defining for each
positive regularization parameter ε > 0 the ε-thick strip

Sε = G× [0, ε].

and then attach the strip to G to obtain

Dε =
D

∐
Sε

G ∼ Sε
,

which is depicted in Figure 2. We will use the coordinates
(ζ, p) ∈ G × [0, ε] to refer to points in the relaxed strip.
Finally, we attach the relaxed strip to R(G) defining the
relaxed hybrid manifold by

Mε =
Dε

G× {ε} Rε

∼ R(G)
,

where Rε : G× {ε} → R(G) is defined by Rε(ζ, ε) = R(ζ)
for each (ζ, ε) ∈ G×{ε}. We will let πε : Dε → Mε denote
the quotient projection taking points from Dε to Mε. It
was shown in Westenbroek et al. (2018) that Mε can also
be endowed with a smooth manifold structure.

While M is constructed by ‘gluing’ G to R(G) to form the
co-dimension-1 sub-manifold Σ ⊂ M, intuitively, Mε is
then formed by ‘pulling’ G and R(G) apart to create the
ε-thick strip

Σε = πε(Sε) ⊂ Mε

now separating the two surfaces, which are represented by
the sets πε(G), πε(R(G)) ⊂ Mε. Note that the set M\ Σ
is a proper subset of Mε. Specifically, we can decompose
Mε = (M \ Σ) ∪ Σε. Indeed, the smooth vector field
F ε : Mε × U → TMε we construct is of the form

F ε(x, u) =

{
F (x, u) if x ∈ M \ Σ
F̃ ε(x, u) if x ∈ Σε

where F̃ ε : Σε × U → TΣε interpolates between the
discontinuities in F . To construct F̃ ε, we first let UG ⊂ Mε

be a neighborhood containing πε(G) and let UR(G) ⊂ Mε

be a neighborhood containing πε(R(G)) as in Figure 2.

Next, let F̃1 : UG ∪ Σε × U → TMε smoothly extend F1

onto Σε and let F̃2 : UG∪Σε×U → TMε smoothly extend
F̃2 onto Σε. We then define the vector field on the relaxed
strip in the coordinates (ζ, p) ∈ G× [0, ε] by

F̃ ε((ζ, p), u) = (1−αε(p))F̃1((ζ, p), u)+αε(p)F̃2((ζ, p), u),

where for each ε > 0 we define αε : [0, ε] → [0, 1] by
αε(τ) = α( τε ) where α : [0, 1] → [0, 1] is any smooth
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function such that i) α(0) = 0, ii) α(1) = 1, iii) α
is monotonically increasing and iv) α has bounded first

and second derivatives. That is, F̃ ε smoothly interpolates
between F̃1 and F̃2 (which represent the dynamics of F on
either side of the strip).

Remark 1. It was shown in (Westenbroek et al., 2018,
Theorem 6) that F ε is a smooth vector field.

Remark 2. We can represent an execution ξ : [0, T ] → D
of H with initial condition ξ(0) = ξ0 as a piecewise contin-
uous curve x = πε ◦ ξ : [0, T ] → Mε. The corresponding
solution to the relaxed dynamics is given by the curve
xε : [0, T ] → Mε which is the integral curve of F ε starting
from the initial condition xε(0) = πε(ξ0) under the appli-
cation of the same input used to generate ξ. In (Westen-
broek et al., 2018, Theorem 7) it was demonstrated that

supt∈[0,T ] d̃Mε(x(t), xε(t)) → 0 as ε → 0, where d̃Mε is the

metric for Mε introduced in Burden et al. (2015). In other
words, the solutions to the smooth dynamics converge to
the executions of the original hybrid system when they are
both represented on Mε and the relaxation parameter is
taken to zero.

3. OPTIMAL CONTROL

3.1 Hybrid Optimal Control Problems

We consider optimal control problems with a fixed initial
condition ξ0 ∈ D, and for each u ∈ L2 ([0, T ] , U) we
will let ξu : [0, T ] → D denote the hybrid execution
corresponding to this data. We define the Hybrid Optimal
Control Problem (HOCP):

inf
u∈L2([0,T ],U)

�(u) =
∫ T

0
�r(ξ

u(t))dt+ �f (ξ
u(T )),

where �r : D × U → R is the running cost and �f : D → R
is the terminal cost. For simplicity, we assume that ξu

exists for each u ∈ L2 ([0, T ] , U) so that �(u) is always
well-defined and assume that both cost functions are
continuously differentiable.

It is well-known Caines et al. (2007) that the transver-
sality conditions in Assumption 3 ensure that �(·) is
continuous and differentiable in a neighborhood of each
u ∈ L2([0, T ] , U) such that ξu(T−) �∈ G. However, when
ξu(T−) ∈ G nearby executions may undergo a different
number of discrete jumps in which case � may be discon-
tinuous at this point.

3.2 Recasting the Problem on the Hybrid Manifold

We may reformulate the HOCP as an optimal control
problem defined on the hybrid manifold as follows:

inf
u∈L2([0,T ],U)

L(u) =
∫ T

0

Lr(x
u(t), u(t))dt+ Lf (x

u(T ))

where xu : [0, T ] → M is the integral curve of F corre-
sponding to the data (π(ξ0), u), the running cost Lr : M×
U → R is defined by Lr(x, u) = �r(π

−1(x), u) for each
(x, u) ∈ D × U and the terminal cost Lf : M → R is
defined by Lf (x) = �f (π

−1(x)) for each x ∈ D. Since π−1

is multi-valued for each x ∈ Σ, the terminal and final costs
will in general be multi-valued and discontinuous at these

points. Thus, recasting the HOCP on M highlights the
underlying degeneracy of the original HOCP. The relaxed
optimal control problems we formulate below resolve these
issues by producing smooth approximations to these costs
over our family of smooth vector fields.

3.3 Relaxed Optimal Control Problems

We now construct a smooth approximation to L(·) using
smooth approximations to Lr and Lf defined on Mε and
the smooth vector field F ε. For each ε > 0 the smooth
approximate running cost Lε

r : Mε ×U → R and terminal
cost Lε

f : Mε → R are of the form

Lε
r(x, u) =

{
Lr(x, u) if x ∈ M \ Σ
L̃ε
r(x, u) if x ∈ Σε (2)

Lε
f (x) =

{
Lf (x) if x ∈ M \ Σ
L̃ε
f (x) if x ∈ Σε (3)

where L̃ε
r : Σ

ε × U → R and L̃ε
f : Σ

ε → R are constructed

analogously to how F̃ ε was constructed in Section 2.3 by
interpolating between the discontinuities in Lr and Lf .
With these smooth costs in hand, for each ε > 0 we define
the relaxed hybrid optimal control problem (RHOCP)

min
u∈L2([0,T ],U)

Lε(u) =
∫ T

0
Lε
r(x

ε,u(t), u(t))dt+ Lε
f (x

ε,u(T )),

where xε,u : [0, T ] → Mε is the integral curve of
F ε corresponding to the data (π(ξ0), u). The following
Lemma demonstrates that the relaxed cost functional well-
approximates the original hybrid cost functional at points
where it is continuous, and largely follows from (Westen-
broek et al., 2018, Theorem 7):

Lemma 2. Let our standing assumptions hold. If u ∈
L2([0, T ] , U) is s.t. xu(T ) �∈ Σ then limε→0+ Lε(u) = L(u).

Moreover, since F ε, Lε
r and Lε

f are smooth the directional
derivatives of Lε are well-defined and characterized by a
well-behaved adjoint equation:

Lemma 3. Let our standing assumptions hold. For each
u ∈ L2([0, T ] , U) and δu ∈ L2([0, T ] ,Rm) we have

DLε(u; δu) =
∫ T

0
〈λ(t)B(t)T + ∂

∂u�
ε
r(x

ε,u(t), u(t)), δu(t)〉dt,
where the adjoint process λ : [0, T ] → T ∗Mε satisfies the
co-variational equation defined, in local coordinates, by

λ̇(t) = −λ(t)A(t)− ∂
∂x�

ε
r(x

ε,u(t), u(t)), (4)

with the terminal condition λ(T ) = d
dx�

ε
f (x

ε,u(T )), where

A(t) = ∂
∂xf

ε(xε,u(t), u(t)) and B(t) = ∂
∂uf

ε(xε,u(t), u(t)),
with fε the local representation of F ε, �εr the local repre-
sentation of Lε

r and �εf the local representation of Lε
f .

It is well-known (see e.g. Caines et al. (2007)) that the
adjoint process associated to the original HOCP is dis-
continuous at time instances when the nominal hybrid
execution undergoes a discontinuous jump. The proof of
the following theorem demonstrates that the relaxed ad-
joint equations recover these jumps as ε → 0+ at points
where the original hybrid cost is differentiable (i.e. when
xu(T ) �∈ Σ). This result, which is significantly stronger
than Lemma 2, indicates that the first-order variational
properties of F ε agree with those of the original hybrid sys-
tem. Indeed, Lemma 2 is insufficient to establish that local
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function such that i) α(0) = 0, ii) α(1) = 1, iii) α
is monotonically increasing and iv) α has bounded first

and second derivatives. That is, F̃ ε smoothly interpolates
between F̃1 and F̃2 (which represent the dynamics of F on
either side of the strip).

Remark 1. It was shown in (Westenbroek et al., 2018,
Theorem 6) that F ε is a smooth vector field.

Remark 2. We can represent an execution ξ : [0, T ] → D
of H with initial condition ξ(0) = ξ0 as a piecewise contin-
uous curve x = πε ◦ ξ : [0, T ] → Mε. The corresponding
solution to the relaxed dynamics is given by the curve
xε : [0, T ] → Mε which is the integral curve of F ε starting
from the initial condition xε(0) = πε(ξ0) under the appli-
cation of the same input used to generate ξ. In (Westen-
broek et al., 2018, Theorem 7) it was demonstrated that

supt∈[0,T ] d̃Mε(x(t), xε(t)) → 0 as ε → 0, where d̃Mε is the

metric for Mε introduced in Burden et al. (2015). In other
words, the solutions to the smooth dynamics converge to
the executions of the original hybrid system when they are
both represented on Mε and the relaxation parameter is
taken to zero.

3. OPTIMAL CONTROL

3.1 Hybrid Optimal Control Problems

We consider optimal control problems with a fixed initial
condition ξ0 ∈ D, and for each u ∈ L2 ([0, T ] , U) we
will let ξu : [0, T ] → D denote the hybrid execution
corresponding to this data. We define the Hybrid Optimal
Control Problem (HOCP):

inf
u∈L2([0,T ],U)

�(u) =
∫ T

0
�r(ξ

u(t))dt+ �f (ξ
u(T )),

where �r : D × U → R is the running cost and �f : D → R
is the terminal cost. For simplicity, we assume that ξu

exists for each u ∈ L2 ([0, T ] , U) so that �(u) is always
well-defined and assume that both cost functions are
continuously differentiable.

It is well-known Caines et al. (2007) that the transver-
sality conditions in Assumption 3 ensure that �(·) is
continuous and differentiable in a neighborhood of each
u ∈ L2([0, T ] , U) such that ξu(T−) �∈ G. However, when
ξu(T−) ∈ G nearby executions may undergo a different
number of discrete jumps in which case � may be discon-
tinuous at this point.

3.2 Recasting the Problem on the Hybrid Manifold

We may reformulate the HOCP as an optimal control
problem defined on the hybrid manifold as follows:

inf
u∈L2([0,T ],U)

L(u) =
∫ T

0

Lr(x
u(t), u(t))dt+ Lf (x

u(T ))

where xu : [0, T ] → M is the integral curve of F corre-
sponding to the data (π(ξ0), u), the running cost Lr : M×
U → R is defined by Lr(x, u) = �r(π

−1(x), u) for each
(x, u) ∈ D × U and the terminal cost Lf : M → R is
defined by Lf (x) = �f (π

−1(x)) for each x ∈ D. Since π−1

is multi-valued for each x ∈ Σ, the terminal and final costs
will in general be multi-valued and discontinuous at these

points. Thus, recasting the HOCP on M highlights the
underlying degeneracy of the original HOCP. The relaxed
optimal control problems we formulate below resolve these
issues by producing smooth approximations to these costs
over our family of smooth vector fields.

3.3 Relaxed Optimal Control Problems

We now construct a smooth approximation to L(·) using
smooth approximations to Lr and Lf defined on Mε and
the smooth vector field F ε. For each ε > 0 the smooth
approximate running cost Lε

r : Mε ×U → R and terminal
cost Lε

f : Mε → R are of the form

Lε
r(x, u) =

{
Lr(x, u) if x ∈ M \ Σ
L̃ε
r(x, u) if x ∈ Σε (2)

Lε
f (x) =

{
Lf (x) if x ∈ M \ Σ
L̃ε
f (x) if x ∈ Σε (3)

where L̃ε
r : Σ

ε × U → R and L̃ε
f : Σ

ε → R are constructed

analogously to how F̃ ε was constructed in Section 2.3 by
interpolating between the discontinuities in Lr and Lf .
With these smooth costs in hand, for each ε > 0 we define
the relaxed hybrid optimal control problem (RHOCP)

min
u∈L2([0,T ],U)

Lε(u) =
∫ T

0
Lε
r(x

ε,u(t), u(t))dt+ Lε
f (x

ε,u(T )),

where xε,u : [0, T ] → Mε is the integral curve of
F ε corresponding to the data (π(ξ0), u). The following
Lemma demonstrates that the relaxed cost functional well-
approximates the original hybrid cost functional at points
where it is continuous, and largely follows from (Westen-
broek et al., 2018, Theorem 7):

Lemma 2. Let our standing assumptions hold. If u ∈
L2([0, T ] , U) is s.t. xu(T ) �∈ Σ then limε→0+ Lε(u) = L(u).

Moreover, since F ε, Lε
r and Lε

f are smooth the directional
derivatives of Lε are well-defined and characterized by a
well-behaved adjoint equation:

Lemma 3. Let our standing assumptions hold. For each
u ∈ L2([0, T ] , U) and δu ∈ L2([0, T ] ,Rm) we have

DLε(u; δu) =
∫ T

0
〈λ(t)B(t)T + ∂

∂u�
ε
r(x

ε,u(t), u(t)), δu(t)〉dt,
where the adjoint process λ : [0, T ] → T ∗Mε satisfies the
co-variational equation defined, in local coordinates, by

λ̇(t) = −λ(t)A(t)− ∂
∂x�

ε
r(x

ε,u(t), u(t)), (4)

with the terminal condition λ(T ) = d
dx�

ε
f (x

ε,u(T )), where

A(t) = ∂
∂xf

ε(xε,u(t), u(t)) and B(t) = ∂
∂uf

ε(xε,u(t), u(t)),
with fε the local representation of F ε, �εr the local repre-
sentation of Lε

r and �εf the local representation of Lε
f .

It is well-known (see e.g. Caines et al. (2007)) that the
adjoint process associated to the original HOCP is dis-
continuous at time instances when the nominal hybrid
execution undergoes a discontinuous jump. The proof of
the following theorem demonstrates that the relaxed ad-
joint equations recover these jumps as ε → 0+ at points
where the original hybrid cost is differentiable (i.e. when
xu(T ) �∈ Σ). This result, which is significantly stronger
than Lemma 2, indicates that the first-order variational
properties of F ε agree with those of the original hybrid sys-
tem. Indeed, Lemma 2 is insufficient to establish that local

minimizers of the RHOCP coincide with local minimizers
of HOCP as the relaxation parameter tends to zero, as
results of this sort generally require the stronger condition
that the optimality conditions of the two problems agree
in the limit (Polak (2012)). Thus the following result is
foundational for the systematic design of algorithms which
provably find approximate local minimizers of the original
hybrid optimal control problem using our relaxations:

Theorem 1. Let our standing assumptions hold. Further
assume that u ∈ L2([0, T ] , U) is such that xu(T ) �∈ Σ.
Then for each δu ∈ L2([0, T ] ,Rm) we have:

lim
ε→0+

DLε(u; δu) = DL(u; δu).

Future work will aim to extend well-established numeri-
cal frameworks (Polak, 2012, Chapter 4) for finding ap-
proximate minimizers of continuous-time optimal control
problems to the current setting using this result.

4. APPLICATIONS

We now apply our approach to two mechanical systems
which repeatedly undergo impacts. A more in depth dis-
cussion of the models and practical numerical implemen-
tations of the smoothing approach is provided in the tech-
nical report.

4.1 Robotic Bouncing Ball

We first consider a robotic bouncing ball with horizontal
thrust forces to drive the ball to different locations, which
is bouncing on the sinusoidal surface depicted in Figure
3. The ball has two degrees of freedoms (DoFs). Its states

are described as x = [bz, bx, ḃz, ḃx]
T , with bz, bx being the

vertical and horizontal positions. The continuous dynamics
are defined by f(x, u) = [ḃz, ḃx, g, u]

T , where u ∈ R1 is the
horizontal thrust force on the ball and g is the gravitational
constant. The ground profile yields a unilateral constraint
of the form h(bx, bz) = 0. We use the impact model from
Or and Ames (2010) so the positions remain unchanged

Fig. 3. (a) The trajectory of the ball with u = 0, (b) the
optimized trajectory of the ball, (c) the horizontal
trajectories, and (d) the optimized input.

during impacts but the velocities ḃ = [ḃx, ḃz] are reset

according to ḃ+ = ḃ− − (1 + rc)
ḃ−JT

h

JhJT
h

JT
h , where Jh is

the Jacobian of h and rc ∈ (0, 1) is the coefficient of
restitution.

We consider the problem of driving the ball to follow a
desired horizontal trajectory bdesiredx (t) from an initial state
x0 = [1, 0, 0, 1]T . Thus, the cost function is: �(x, t) =∫ T

t=0
|bx(t) − bdesiredx (t)|2dt, where T = 1s is the time

horizon. We set rc = 0.4, ε = 10−3, and use forward Euler
integration with a time step of 10−3s for the disceretiza-
tion. The initial guess of the inputs u is set to be zeros.
Fig. 3 shows the results, where the optimization produces
a markedly different trajectory than the initialization and
closely tracks the desired behavior while undergoing a
different number of impacts than the solution produced
by the initial guess.

4.2 Bipedal Robotic Walker

Next we use our approach to generate a stable multi-step
walking behavior on the planar under-actuated five-linkage
bipedal robot shown in Fig. 4 (a). We use the planar single-
domain hybrid model from Grizzle et al. (2014) in which
during each phase of continuous evolution the swing foot
is above the ground while the stance foot is assumed to
remain motionless on the ground. At the end of each step
(when the swing foot impacts the ground) the swing foot
and stance foot are swapped and the new swing foot is
assumed to lift off from the ground instantaneously.

Continuous Dynamics: The configuration variables for
the system are q = (q1, q2, q3, q4, θ) ∈ Q ⊂ R5 whose
dynamics can be derived using the method of Lagrange:

M(q)q̈ + C(q, q̇) +G = Bu

where M is the mass matrix, C is the Coriolis and
centrifugal term,G is the gravitational term, B and u ∈ R4

are the actuation matrix and the motor torque vector.
The overall state variable is x = (q, q̇) ∈ TQ. The
continuous domain for the system is defined by D ={
x ∈ TQ× R2 : zsw(q) ≥ 0

}
, where zsw(q) gives the height

of the swing foot.

Impact Assumption: The impact between the foot and
the ground is assumed to be plastic. The guard for the
system is defined by G = {x ∈ D : zsw(q) = 0, d

dq zsw(q) ·
q̇ < 0}, the set of states where the swing foot impacts the
ground. At impact the joint velocities are reset via

q̇+ = ∆(q)q̇−,

where the exact expression of ∆(q) can be found in Grizzle
et al. (2014). The reset map R : G → R(G) is given by

R(q, q̇) = (R̂q, R̂∆(q)q̇)T , where R̂ is a relabeling matrix
used to swap the stance foot and swing foot.

Optimal Control Problem: The goal of the optimiza-
tion is for the robot to smoothly accelerate from rest
and terminate the optimized trajectory on a pre-designed
periodic walking gate which was constructed using the
Hybrid Zero Dynamics approach (Grizzle et al. (2014)).
Methods for generating periodic walking motions gener-
ally do not prescribe a method for reaching the peri-
odic gate from rest. Thus, solving this task immediately
compliments established tools from the dynamic walking



186	 Tyler Westenbroek  et al. / IFAC PapersOnLine 54-5 (2021) 181–186

Fig. 4. (a) The five-linkage biped model. (b, c) Trajectories of the optimized walking. (d) Snapshots of the walking.

literature. Figure 4 displays the results of applying our
method. The optimization is able to reach the periodic
gate without needing to pre-specifiy the number of steps
ahead of time. A description of the cost functions used
to achieve this behavior can be found in Westenbroek
et al. (2021). The simulation is conducted with a relaxation
parameter ε = 10−3, time step of 10−3s and forward Euler
integration.

5. DISCUSSION

There are several important avenues for future work. It
will be important to understand how the state constraints
on the original HOCP translate onto the hybrid manifold,
as many HOCPs solved by practitioners involve such con-
straints. Future work will further characterize the numerics
of the RHOCP, and seek to find numerical algorithms with
can find approximate minimizers of the original HOCP.
Finally, future research will examine directly formulating
costs on the hybrid manifold.
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