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Abstract: This paper introduces a framework for learning a safe, stabilizing controller for
a system with unknown dynamics using model-free policy optimization algorithms. Using a
nominal dynamics model, the user specifies a candidate Control Lyapunov Function (CLF)
around the desired operating point, and specifies the desired safe-set using a Control Barrier
Function (CBF). Using penalty methods from the optimization literature, we then develop a
family of policy optimization problems which attempt to minimize control effort while satisfying
the pointwise constraints used to specify the CLF and CBF. We demonstrate that when
the penalty terms are scaled correctly, the optimization prioritizes the maintenance of safety
over stability, and stability over optimality. We discuss how standard reinforcement learning
algorithms can be applied to the problem, and validate the approach through simulation. We
then illustrate how the approach can be applied to a class of hybrid models commonly used in
the dynamic walking literature, and use it to learn safe, stable walking behavior over a randomly
spaced sequence of stepping stones.

Keywords: Adaptation and learning in physical agents, Lyapunov methods, Reinforcement
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1. INTRODUCTION

Following recent empirical successes from the reinforce-
ment learning (RL) literature (Levine et al. (2016)),
there has been a renewed interest in data-driven methods
for controller design in the case of model uncertainty
(Berkenkamp et al. (2017); Akametalu et al. (2014)). How-
ever, despite the flexibility of model-free approaches, these
methods are known to suffer from poor sample complexity
since they do not take advantage of known structural
properties of the control system. Moreover, the literature
currently lacks constructive methods for designing learn-
ing problems which give the system designer fine-grained
control over potentially competing global objectives, such
as the rate of convergence to a desired operating point or
the avoidance of an unsafe region of the state-space.

Fortunately, modern model-based control theory has de-
veloped many tools such as Control Lyapunov Functions
(CLFs; Sontag (1989)) and Control Barrier Functions
(CBFs; Ames et al. (2017)) which allow the system de-
signer to constrain the pointwise closed-loop behavior of
a given control system to ensure desired global properties
(stability and safety, respectively) are achieved. When an
accurate dynamics model is available, online optimization
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can be used to satisfy these pointwise constraints while
minimizing a cost, such as control effort (Ames et al.,
2017). In effect, these approaches reduce the satisfaction
of challenging global objectives to simple local decisions
from the perspective of controller synthesis.

This paper takes preliminary steps towards extending this
design philosophy to the model-free setting by introduc-
ing a framework for systematically designing policy opti-
mization problems over a parameterized learned controller
which enforces a hierarchy of user-specified constraints
on the closed-loop dynamics. To make the framework
explicit, we focus on learning safe, stabilizing controllers
using CLFs and CBFs and choose to prioritize safety
over stability. We focus on the regime where the system
designer has access to a dynamics model which may be
highly inaccurate but is assumed to at least capture basic
structural information about the real world plant. The
model is used to construct a candidate CLF and CBF for
the plant and a family of policy optimization problems
are formulated which use penalty terms to discourage
violations of the pointwise constraints imposed by these
functions. This allows the system designer to carefully
constrain the desired closed-loop behavior for the learned
controller while also allowing for additional performance
terms, such as minimizing control effort.

Our theoretical results demonstrate how to scale the
penalty terms to control violations of the constraints and
appropriately prioritize safety over stability and stability



over performance. We first introduce the approach for
classical control systems but then demonstrate how to
extend the approach to the hybrid case via an application
to a class of hybrid models which are frequently used in
the dynamic walking literature (Grizzle et al. (2014)). We
discuss how to synthesize numerical approximations to
the family of learning problems which can be solved us-
ing standard machine learning techniques, including state
of the art reinforcement learning algorithms. Simulation
experiments are provided for both the continuous and
hybrid cases, which demonstrate that our method is able
to effectively learn safe, stabilizing controllers in the face
of large amounts of dynamics uncertainty. We can reliably
solve the policy optimization problems formulated over
these systems using only a few minutes or even seconds
of simulated data, representing a sharp increase in the
sample efficiency usually found in the reinforcement learn-
ing literature (Hwangbo et al., 2017; Levine et al., 2016).
We conjecture that this is due to the large amount of
structure embedded in the learning problem through the
incorporation of CLF and CBF constraints, which reduce
the search for an optimal safe, stabilizing controller to a
set of local criteria at each point in the state space.

Related Work: The unification of Control Barrier Func-
tions and Control Lyapunov Functions to synthesize safe,
stabilizing controllers was first proposed in Ames et al.
(2017) using online quadratic programming. In the case
of model uncertainty, robust formulations have been pro-
posed (Nguyen and Sreenath (2021)). Learning based
methods using supervised learning (Taylor et al., 2020)
or reinforcement learning (Choi et al., 2020) to learn the
uncertain dynamics terms in the quadratic program have
also been considered. These can be thought of as indi-
rect learning methods, since they still require solving an
optimization problem involving the learned components
to calculate the desired controller. The primary downside
of each of these approaches is that if the optimization is
infeasible at a particular point then the control strategy
will generally be undefined, which can be particularly
difficult to rule out when learning unknown dynamics.

Building on our previous work (Westenbroek et al., 2020),
we introduce a framework for directly learning a safe,
stabilizing controller for the system using model-free policy
optimization algorithms. By directly learning the desired
controller, our approach removes the need for solving
a real-time optimization problem involving a potentially
complex learned component, which may take a non-trivial
amount of time to process during real-time applications.
At points where it is infeasible to satisfy the desired
constraints, our method provides a “best effort” control
strategy which satisfies the constraints to the greatest
degree possible, bypassing issues of feasibility.

Remark 1. A longer version of this paper can be found at
Westenbroek et al. (2021).

2. CONTROL LYAPUNOV FUNCTIONS AND
CONTROL BARRIER FUNCTIONS

Throughout most of the paper we will consider control-
affine systems of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state and u ∈ Rm the input.
We assume that f : Rn → Rn and g : Rn → Rn×m are
continuously differentiable.

Control Lyapunov Functions: Control Lyapunov Func-
tions (CLFs; Sontag (1989)) are commonly used to con-
struct a controller which stabilizes a system to either a
desired operating point or a desired subset of the state-
space (Ames et al., 2014). Specifically, we say that the
continuously differentiable function V : Rn → R≥0 is a
Control Lyapunov Function if

inf
u∈Rm

∇V (x)[f(x) + g(x)u] ≤ −σ(x) ∀x ∈ Rn \ {0}, (2)

where σ : Rn → R specifies a desired pointwise rate of
decay. Here, V and σ are both assumed to be positive
definite, and V is additionally assumed to be radially
unbounded. Under these conditions, V can be viewed as
a generalized energy function for (1), and condition (2)
ensures that there exists a control which drives the system
state asymptotically to the origin.

Control Barrier Functions: Inspired by barrier func-
tions from the optimization literature, the level sets of
Control Barrier Functions (CBFs) encode user-specified
safety constraints. Many classes of CBFs have been pro-
posed in recent years (Ames et al., 2017; Xu et al., 2015;
Nguyen and Sreenath, 2016), but for concreteness through-
out the paper we will use the class proposed in Xu et al.
(2015). Specifically, we say that the function h : Rn → R
is a Control Barrier Function if

sup
u∈Rm

∇h(x)[f(x) + g(x)u] ≥ −α(h(x)) ∀x ∈ C, (3)

where C = {x ∈ Rn : h(x) ≥ 0} is a safe set specified by the
0-super-level set of h, and α : (−b, a) → R, with a, b > 0,
is locally Lipschitz, strictly increasing, and α(0) = 0.

It is natural to then search for a Lipschitz continuous
control law which satisfies the pointwise constraints in (2)
and (3) simultaneously. One candidate control law is given
by solving a pointwise quadratic program (QP):

u∗(x) = arg min
u∈Rm

‖u‖22 (4)

s.t. ∇V (x)[f(x) + g(x)u] ≤ −σ(x)

∇h(x)[f(x) + g(x)u] ≥ −α(h(x))

which aims to minimize control effort while satisfying the
two pointwise constraints. Unfortunately, even if V and
h are an actual CLF and CBF for the system, it may
be impossible to satisfy both constraints simultaneously
leading to infeasibility issues. A common heuristic is to
add slack terms to one or both of the constraints to ensure
feasibility of the problem at the cost of some violation of
the constraints (Ames et al., 2017).

3. LEARNING SAFE, STABILIZING CONTROLLERS
FOR UNCERTAIN SYSTEMS

While control laws similar to (4) have been successfully
applied in a number of applications they have several
practical limitations. Most importantly, these approaches
require that an exact dynamics model is available to ensure
that the pointwise constraints in (4) can be satisfied on the
real-world system. Secondly, the infeasibility issues men-
tioned above mean that the controller may be undefined
at certain points in the state-space, which can be highly



problematic during real-time operation. This motivates
the method detailed below, which uses a candidate CLF
and CBF to learn an optimal safe, stabilizing controller for
an uncertain system using data collected from the plant.
The method prioritizes satisfaction of the CBF constraint
over the CLF constraint and removes the need for real-
time optimization.

Specifically we will seek to safely stabilize the plant

ẋ = fp(x) + gp(x)u, (5)

whose dynamics are unknown. We will also assume that a
nominal dynamics model for the plant is available:

ẋ = fm(x) + gm(x)u. (6)

We assume that the dynamics model has been used to
synthesize a candidate CLF V (and rate σ) and CBF h
(and rate α) for the unknown plant. Even though the
dynamics of the plant are unknown, it is often reasonable
to assume that the model captures enough basic struc-
tural information about the plant to guarantee that these
functions are also a valid CLF and CBF for the real-
world system. For example, in our simulated applications
we design the candidate CLF using feedback linearization,
which is guaranteed to be a CLF for the true system as
long as the relative degree of the plant matches that of the
model, a relatively weak assumption.

The learned controller û : Rn ×Θ→ Rm is of the form

û(x, θ) = um(x) + ũ(x, θ). (7)

Here, um : Rn → Rm is a nominal controller supplied by
the system designer which is derived from the nominal
dynamics model, and ũ : Rn × Θ → Rm is a learned
augmentation. The learned parameters (θ1, . . . , θp) ∈ Θ ⊂
Rp are to be trained so as to select the optimal safe,
stabilizing controller for the system.

Assumption 1. The learned controller û : Rn × θ → Rm is
continuously differentiable in both of its arguments.

Assumption 2. The set of learned parameters Θ is a com-
pact convex set.

Our primary goal is to find a controller which satisfies the
following infinite dimensional constraints, when possible:

−∇h(x)[fp(x) + gp(x)û(x, θ)]− α(h(x))︸ ︷︷ ︸
∆1(x,θ)

≤ 0 ∀x ∈ C,

(8)
∇V (x)[fp(x) + gp(x)û(x, θ)] + σ(x)︸ ︷︷ ︸

∆2(x,θ)

≤ 0 ∀x ∈ C. (9)

Here, the set C ⊂ Rn is the safe-set defined by the 0-
super-level set of h. In words, we want to train a controller
û(·, θ) : Rn → R which satisfies the safety and stabilization
constraints that the chosen CBF and CLF impose on the
real-world system. We make the following assumption:

Assumption 3. The safe set C is compact.

Since it may not be possible to learn a controller which sat-
isfies both sets of constraints simultaneously, our learning
framework must be flexible enough to prioritize the safety
objective over the stabilization objective when necessary.
While we do not know the terms in ∆1(x, θ) and ∆2(x, θ)
since the dynamics of the plant are unknown, these terms
can be calculated for different values of x ∈ C and θ ∈ Θ
if measurements of V̇ and ḣ are available when collecting
data from the plant.

In order to enforce these constraints while minimizing
control effort, we will solve optimizations of the form

P(λ1,λ2) : min
θ∈Θ

Ex∼XL(λ1,λ2)(x, θ),

where

L(λ1,λ2)(x, θ) = ‖û(x, θ)‖22 + λ1H(∆1(x, θ)) + λ2H(∆2(x, θ)),

the hinge map H : R→ R is defined by H(y) = max {0, y}
for each y ∈ R, and the probability distribution X : C →
[0, 1] is supported on C. Here, X is understood to be
the distribution of states visited when collecting samples
from the real world plant during the learning process, and
λ1, λ2 ≥ 0 are penalty parameters to be chosen later.

Remark 2. The requirement that X is supported on all of
C is analogous to the persistency of excitation conditions
found in the adaptive control literature (Sastry and Bod-
son, 1989), and ensures that the data is “rich enough” so
that the correct controller is learned. Note that under this
assumption the penalty terms Ex∼Xλ1H(∆1(x, θ)) and
Ex∼Xλ2H(∆2(x, θ)) are positive if and only if the safety
and stability constraints are violated, respectively, at some
point x ∈ C. Thus this richness requirement guarantees
that violations of the pointwise constraints are appro-
priately penalized by the optimization. The theoretical
guarantees we provide below are algorithm agnostic, and
seek to characterize the global optimizers of the problem.
Future work will seek to bound the performance of specific

machine learning algorithms used to solve P(λ1,λ2), which
generally come in the form of probabilistic guarantees.

Theoretical Analysis: We now demonstrate that vio-
lations of the safety and stability constraints can be de-
creased to a pre-specified tolerance by scaling the penalty
terms appropriately. For simplicity, we assume there exists
at least one set of parameters which satisfies the safety
constraint:

Assumption 4. There exists θ∗ ∈ Θ such that for each
x ∈ C we have ∆1(x, θ∗) ≤ 0.

Next, we build up some additional notation to simplify the
statement of our theoretical results. First, define the maps
Mu,M1,M2 : Θ→ R≥0 by

Mu(θ) = Ex∼X‖û(x, θ)‖22,
M1(θ) = Ex∼XH(∆1(x, θ)),

M2(θ) = Ex∼XH(∆2(x, θ)).

For each chosen parameter θ ∈ Θ, Mu(θ) captures total
energy exerted by the corresponding controller across the
safe set, M1(θ) is the extent to which the CBF constraint
is violated, and M2(θ) is the extent to which the CLF
constraint is violated. Next, for each ε1 ≥ 0 define

Θε1 = {θ ∈ Θ: M1(θ) ≤ ε1} ,
which is the set of parameters for which the total violation
of the CBF constraint is less than ε1. We also define

M̃2 = min
θ∈Θ0

M2(θ), (10)

which is the smallest extent to which the CLF constraint
can be violated, subject to exact satisfaction of the CBF
constraint, and is the ideal amount of violation of the
CLF constraint that can be returned by our optimization
problem. We then define for each ε1, ε2 ≥ 0

Θε1,ε2 = {θ ∈ Θε1 : M2(θ) ≤ M̃2 + ε2},



which is the set of parameters corresponding to learned
controllers which violate the CBF and CLF constraints no
more than ε1 ≥ 0 and ε2 ≥ 0 more than their ideal values.

We now present our first result, whose proof can be found
in the Appendix:

Theorem 1. There exist constants, C1, C2, C3 ≥ 0 such
that if λ1 ≥ C1λ2+C2

ε1
and λ2 ≥ C3

ε2
then each global

optimizer θ∗ of P(λ1,λ2) satisfies θ∗ ∈ Θε1,ε2 .

The result indicates that if we choose λ2 � 0 and λ1 � λ2

our optimization correctly enforces safety over stability,
satisfying the two constraints to the desired tolerances.
Within the set of desired controllers specified by Θε1,ε2 , the
optimization is then left to reduce the amount of control
effort required to achieve these objectives. However, driv-
ing both tolerances to zero requires taking λ1, λ2 →∞.

One practical approach for ensuring exact satisfaction
of the safety constraint for a finite value of the multi-
pliers is to add a small amount of extra conservative-
ness to the pointwise CBF constraint. Specifically, let-
ting ∆δ

1(θ, x) = ∆1(x, θ) + δ for some small parameter
δ > 0, one can replace ∆1(x, θ) with ∆δ

1(x, θ) in the loss
L(λ1,λ2)(x, θ). Due to the continuity of the problem data,
driving Ex∼XH(∆δ

1(θ, x)) to be sufficiently small (which
can be done with finite values of λ1) will ensure exact
satisfaction of the original CBF constraint. A forthcoming
article will address this point in greater detail.

However, the attractive properties mentioned above only

apply to the global minimizers of P(λ1,λ2), which in general
will be non-convex, meaning that in practice only local
minimizers to the problem can be found using common
incremental machine learning algorithms. Thus, we seek
conditions on the structure of the learned controller which
ensure that the optimization problem is convex. Specifi-
cally, we analyze the case where the learned portion of the
controller is of the form

ũ(x, θ) =

p∑
k=1

θkuk(x), (11)

where {uk}pk=1 is a set of features.

Theorem 2. Suppose that the learned augmentation in (7)
is of the form (11), and that the set {uk}pk=1 is linearly

independent. Then P(λ1,λ2) is strongly convex.

Due to space constraints we omit the proof of Theorem 2,
as it closely follows the steps in the proof of Lemma 2 in
Westenbroek et al. (2020).

Many well-known bases such as radial basis functions
(Sanner and Slotine, 1992) or polynomials can be used
to recover any continuous function up to a desired degree
of accuracy by including enough terms in the expansion.
It is an important matter for future work to include
these methods in our framework, as it would enable
users to design networks for the learned controller which
are guaranteed to be able to satisfy the CLF and CBF
constraints to a desired degree of accuracy. However,
function approximation schemes of the form (11) may
require a prohibitive number of bases elements to ensure
that the desired function is accurately reconstructed in
high dimensions. Thus, in practice, more compact function

approximators such as feed-forward neural networks must
be used in high dimensions. Unfortunately, such networks

generally lead to non-convexities in P(λ1,λ2).

Numerical Implementation via RL: In practice, our
method uses finite difference approximations to ḣ and V̇
to compute the terms in ∆1 and ∆2, and then solves

the resulting approximations to P(λ1,λ2) using standard
model-free reinforcement learning algorithms.

Specifically, we will assume that during the learning pro-
cess the learned controller is sampled every ∆t > 0 sec-
onds, and will let tk = k∆t for k ∈ N denote the sampling
instances. When the control û(x(tk), θ) is applied over the
interval [tk, tk+1] we have

∆1(x(tk)), θ) = −
h(x(tk+1))− h(x(tk))

∆t
− α(h(x(tk)))︸ ︷︷ ︸

=:∆̃1(x,θ)

+O(∆t2),

∆2(x(tk)), θ) =
V (x(tk+1))− V (x(tk))

∆t
+ σ(x(tk))︸ ︷︷ ︸

=:∆̃2(x,θ)

+O(∆t2).

Thus, for small ∆t > 0 we approximate L(λ1,λ2) with

L̃(λ1,λ2)(x, θ) = ‖û(x, θ)‖22 + λ1H(∆̃1(x, θ)) + λ2H(∆̃2(x, θ))

and define the following reinforcement learning problem:

P̃
(λ1,λ2)

: min
θ∈Θ

Ex0∼X

[
N∑
k=0

L̃(λ1,λ2)(xk, θ)

]
(12)

s.t. xk+1 = xk +
∫ tk+1

tk
[f(x(t)) + g(x(t))û(xk, θ)] dt

Here, N ∈ {1, 2, . . . } is the length of the rollout for each
experiment on the plant. Note that this is a standard form
for reinforcement learning problems, which can be solved
using any off-the-shelf algorithm. Future work will seek
to provide correctness guarantees when specific learning
algorithms are used to solve these approximations.

4. SIMULATIONS

Due to space constraints, some details of the examples are
excluded but can be found in Westenbroek et al. (2021).

Double Pendulum With Safety Constraint: We first
apply the learning framework to the double pendulum in
Figure 1 with two degrees of freedom q = (θ1, θ2) ∈ R2

and inputs u = (τ1, τ2) ∈ R2, where τi is a torque applied
at the joints. The Lagrangian dynamics obey

M(q)q̈ + Γ(q, q̇) = Bu,

where M(q) is the mass matrix and Γ(q, q̇) collects the
gravity and Coriolis terms. The overall state of the system
is x = (θ1, θ2, θ̇1, θ̇2) ∈ R4.

The control objective is to stabilize the system to the
origin, while ensuring that the y-position of the end-
effector does not dip below the constraint depicted in
Figure 1. In Figure 1 the origin corresponds to both arms
pointing directly to the right. To guide the system towards
the origin, the method from Ames et al. (2014) is used to
design a CLF of the form V (x) = xTPx. We then design
a CBF which ensures satisfaction of the safety constraint
using the method of exponential control barrier functions
(ECBFs) described in Nguyen and Sreenath (2016).



Fig. 1. A trace of a trajectory for the double pendulum
under the influence of the learned controller. The
horizontal black line represents the safety constraint,
while the blue curve traces the end-effector.

To set up the learning problem, we vary the dynamics
parameters of the model (mass and length of arms) by 50
percent between the ‘true’ system dynamics and the nom-
inal model used by the system designer. The learned con-
troller is composed of a linear combination of 300 Gaussian
radial basis functions distributed randomly throughout the
state-space. We solve the reinforcement learning problem
(12) with a rollout length of N = 1, penalty parameters
λ1 = 1000 and λ2 = 100 and step-length of ∆t = 0.05s.
The Soft Actor Critic (SAC) algorithm from Haarnoja
et al. (2018) is used to solve the problem. Figure 1 displays
the performance of the learned controller after only 800
samples are collected, which corresponds to 40 seconds of
data. The controller was tested from 20 initial conditions,
maintaining safety and stability in each scenario.

Safe Bipedal Locomotion on Stepping Stones: We
will now apply the presented method to the Hybrid Zero
Dynamics (HZD) framework in order to learn an efficient,
stable and safe walking controller for a bipedal robot
walking on a discrete terrain of randomly spaced stepping
stones. The robot is modelled as a hybrid system with
impulse effects, as done in Ames et al. (2014):

Σ :


η̇ = f(η, z) + g(η, z)u,

ż = p(η, z) when (η, z) /∈ S,
η+ = ∆X

(
η−, z−

)
,

z+ = ∆Z

(
η−, z−

)
when (η, z) ∈ S,

(13)

where η ∈ X ⊂ Rna are the actuated states, z ∈ Z ⊂ Rnu

the unactuated states, and u ∈ U ⊆ Rm the control inputs.
This model assumes alternating single support phases,
where the swing foot is off the ground and the stance foot
remains at a fixed point. Impact between the swing foot
and the ground is modelled as a rigid impact and occurs
when (η, z) ∈ S, where S is a smooth switching manifold.
In (13), η+ ∈ X and z+ ∈ Z are the post-impact states,
while η− ∈ X and z− ∈ Z are the pre-impact states.

The method of Hybrid Zero Dynamics (HZD) aims to
drive the actuated states to zero thereby constraining the
system to evolve on a lower dimensional zero dynamics
manifold Ψ = {(η, z) ∈ X × Z : η = 0}, which contains
a stable walking gait for the model. As in Ames et al.
(2014), the system can be stabilized to this surface using
feedback linearization to construct a CLF for the actu-
ated coordinates. Following the method in Nguyen and
Sreenath (2015), we also design a CBF which takes in
the relative distance between the current and subsequent
stepping stones and forces the robot to step down on the
next stepping stone during each impact event. Both of

Fig. 2. Plot of the desired step length vs actual step length
achieved by the learned controller for the walking sim-
ulation. The black dashed lines indicate the necessary
step length constraint required to successfully walk
over stepping stones.

these functions are only used to constrain the evolution
of the continuous dynamics, but are constructed so as to
maintain safe, stable walking for the full hybrid dynamics.
Because of this, we can directly apply our framework to
overcome model uncertainty in the continuous dynamics.

To set up the learning problem, model uncertainty is
introduced by scaling the mass and inertia of each of
the robot’s links to be three times those of the nominal
model. The learned policy takes the form of a neural
network with two hidden layers of size 400 × 300, and
tanh activation functions. The training data consists of
rollouts of 2 consecutive walking steps with randomly
perturbed initial conditions and desired step lengths ld
sampled uniformly from L := [0.35, 0.45]m. We again use
SAC to train the policy, with a time step of ∆t = 1/1000s
for numerical simulations. The training process converges
in about 200,000 time steps, corresponding to about 3
minutes and 20 seconds of data.

The trained policy is tested on 100 simulations of 10 walk-
ing steps each, with desired step lengths uniformly sampled
from L. The robot only has knowledge of the position of
the next stepping stone. A simulation is considered as a
failure if the robot fails to land on any of the desired
stepping stones, or if it losses stability and falls. Out of
the 100 simulations, 93 were successful using the learned
controller, while only 26 simulations were successful with
the nominal controller without the learning component.
This ability of the learned controller to adapt to different
required step lengths is clearly reflected in Figure 2.

5. DISCUSSION AND CONCLUSION

In the last section we have shown that our method can
learn safe, stabilizing controllers for systems with high
model uncertainty with only seconds or a few minutes of
training data. However, there are some limitations of our
approach. First, as expected by the use of reinforcement
learning algorithms, fine tuning of the learning hyperpa-
rameters can be time consuming, and in order to get the
results shown in this paper an extensive search had to
be conducted. It will be an important matter for future
work to provide algorithm-dependent guarantees which
characterize the solutions obtained by specific methods

when solving (approximations to) P(λ1,λ2). Future work



will also seek to characterize the effects of input saturation
on our theoretical guarantees.

Appendix A. PROOF OF THEOREM 1

The overall loss can be written as

Ex∼XL(λ1,λ2)(x, θ) = Mu(θ) + λ1M1(θ) + λ2M2(θ).

For convenience we write

Mu = max
θ∈Θ

Mu(θ) Mu = min
θ∈Θ

Mu(θ)

M1 = max
θ∈Θ

M1(θ) M1 = min
θ∈Θ

M1(θ)

M2 = max
θ∈Θ

M2(θ) M2 = min
θ∈Θ

M2(θ)

We first demonstrate that there exists C1, C2 ≥ 0 such
that if λ1 ≥ 1

ε1
C1λ2 + 1

ε1
C2 then for each global optimizer

θ∗ ∈ Θ of P(λ1,λ2) we must have θ∗ ∈ Θε1 . To show
this consider two points θ1 ∈ Θ0 and θ2 6∈ Θε1 . Let
Lk = Ex∼XL(λ1,λ2)(x, θk) for k ∈ {1, 2}. We have that:

L1 ≤Mu + λ2M2 and Mu + λ1ε1 + λ2M2 ≤ L2.

Here, the first inequality follows from the fact that
M1(θ1) = 0 and the second inequality follows from the
fact that M1(θ2) ≥ ε1. Combining the inequalities yields:

L1 ≤
(
Mu −Mu

)
− λ1ε1 + λ2

(
M2 −M2

)
+ L2

Thus, we see that if we set λ1 > 1
ε1
C1λ2 + 1

ε1
C2 with

C1 = M2 −M2 and C2 = Mu −Mu, then we must have
that L1 < L2. Thus, any θ2 6∈ Θε1 cannot be a global
minimizer if we choose the constants C1, C2 ≥ 0 as above.

Next, we demonstrate that when we fix λ1 ≥ 1
ε1
C1λ2 +

1
ε1
C2 as we vary λ2, then there exists C3 ≥ 0 such that if we

choose λ2 ≥ 1
ε2
C3 then any global optimizer θ∗ of P(λ1,λ2)

must lie in Θε1,ε2 . As established above, we already know

that all optimizers of P(λ1,λ2) must lie in Θε1 in this case.
Thus, we will now consider the two points θ3 ∈ Θ0,0

and θ4 ∈
{
θ ∈ Θε1 : M2(θ) > M̃2 + ε2

}
, with M̃2 defined

as in (10), so that θ4 satisfies the desired tolerance for
the CBF constraint but not the desired tolerance for the
CLF constraint. Again let Lk = Ex∼XL(λ1,λ2)(x, θk) for
k ∈ {3, 4}. We then have that

L3 ≤Mu + λ2M̃2 and Mu + λ2(M̃2 + ε2) ≤ L4

where we have used the fact that M1(θ3) = 0, M2(θ3) =

M̃2 and M2(θ4) ≥ M̃2 + ε2. Again combining the inequal-
ities and rearranging terms we see that

L3 ≤
(
Mu −Mu

)
− λ2ε2 + L4.

Thus, we see that if we select C3 = Mu −Mu and put
λ2 ≥ 1

ε2
C3 then it must be the case that L3 < L4 so

that θ4 is not a minimizer. Thus, we see that if we choose
λ1 ≥ 1

ε1
C1λ2 + 1

ε1
C2 and λ2 ≥ 1

ε2
C3 with all of the

constants chosen as above then all minimizers of P(λ1,λ2)

must lie in Θε1,ε2 , as desired.
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